Selected ATcT [1, 2] enthalpy of formation based on version 1.122e of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122d [4] to include chemical species related to methyl acetate and methyl formate [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Nitrous acidHONO (g, trans)N(=O)O-73.005-79.148± 0.079kJ/mol47.01348 ±
0.00061
7782-77-6*1

Representative Geometry of HONO (g, trans)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of HONO (g, trans)

The 20 contributors listed below account only for 83.0% of the provenance of ΔfH° of HONO (g, trans).
A total of 42 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
20.21638.8 NO (g) ONO (g) H2O (g) → 2 HONO (g) ΔrG°(298.15 K) = -1.44 ± 0.10 kJ/molVosper 1976, 3rd Law
15.21209.2 NO (g) → N (g) O (g) ΔrH°(0 K) = 52400 ± 10 cm-1Dingle 1975
15.21209.1 NO (g) → N (g) O (g) ΔrH°(0 K) = 52400 ± 10 cm-1Callear 1970
11.71209.4 NO (g) → N (g) O (g) ΔrH°(0 K) = 52408 ± 10 (×1.139) cm-1Kley 1973, Miescher 1974, est unc
3.21638.2 NO (g) ONO (g) H2O (g) → 2 HONO (g) ΔrG°(298.15 K) = -1.25 ± 0.25 kJ/molWayne 1951, 3rd Law
2.71209.3 NO (g) → N (g) O (g) ΔrH°(0 K) = 52420 ± 12 (×1.957) cm-1Miescher 1974, Huber 1979
2.21162.3 N2 (g) → N+ (g) N (g) ΔrH°(0 K) = 24.2880 ± 0.0009 eVTang 2005
1.91639.3 ONN(O)O (g) H2O (g) → 2 HONO (g) ΔrG°(298.15 K) = -3.26 ± 0.15 (×2.089) kJ/molVosper 1976, 3rd Law
1.81162.1 N2 (g) → N+ (g) N (g) ΔrH°(0 K) = 24.2888 ± 0.0010 eVTang 2005
1.81162.2 N2 (g) → N+ (g) N (g) ΔrH°(0 K) = 24.2883 ± 0.0010 eVTang 2005
1.5118.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.91440.3 (NH4)NO3 (cr,l) → N2 (g) + 1/2 O2 (g) + 2 H2O (cr,l) ΔrH°(293.65 K) = -49.44 ± 0.06 kcal/molBecker 1934
0.71641.1 HONO (g, trans) → OH (g) NO (g) ΔrH°(0 K) = 16772 ± 14 (×1.414) cm-1Reiche 2000, Reiche 2002, Dieke 1962
0.61212.4 NO (g) → N (g) O (g) ΔrH°(0 K) = 626.47 ± 0.56 kJ/molHarding 2008
0.51211.10 NO (g) → N (g) O (g) ΔrH°(0 K) = 149.82 ± 0.15 kcal/molKarton 2007a, Karton 2008
0.51209.6 NO (g) → N (g) O (g) ΔrH°(0 K) = 6.503 ± 0.004 (×1.682) eVBrewer 1956, Frisch 1965
0.41594.4 HNO (g) → H (g) N (g) O (g) ΔrH°(0 K) = 823.10 ± 0.56 kJ/molHarding 2008
0.41210.10 NO (g) → N (g) O (g) ΔrH°(0 K) = 149.78 ± 0.16 kcal/molFeller 2014
0.41638.4 NO (g) ONO (g) H2O (g) → 2 HONO (g) ΔrG°(323 K) = 2.57 ± 0.22 (×3.018) kJ/molAshmore 1961, 3rd Law
0.41212.2 NO (g) → N (g) O (g) ΔrH°(0 K) = 626.74 ± 0.70 kJ/molHarding 2008

Top 10 species with enthalpies of formation correlated to the ΔfH° of HONO (g, trans)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 Nitrous acidHONO (g)N(=O)O-73.005-78.662± 0.079kJ/mol47.01348 ±
0.00061
7782-77-6*0
82.5 Nitrogen dioxideONO (g)O=[N]=O36.85934.052± 0.065kJ/mol46.00554 ±
0.00060
10102-44-0*0
82.5 Nitric oxideNO (g)[N]=O90.61991.123± 0.065kJ/mol30.00614 ±
0.00031
10102-43-9*0
82.3 Nitrosyl ion[NO]+ (g)N#[O+]984.487984.482± 0.065kJ/mol30.00559 ±
0.00031
14452-93-8*0
80.2 Dinitrogen tetraoxideO2NNO2 (g)O=N(=O)N(=O)=O20.1510.86± 0.14kJ/mol92.0111 ±
0.0012
10544-72-6*0
79.7 Nitrosyl chlorideClNO (g)ClN=O54.45352.552± 0.067kJ/mol65.45884 ±
0.00095
2696-92-6*0
77.8 DioxohydrazineONNO (g, cis)O=NN=O172.89171.13± 0.14kJ/mol60.01228 ±
0.00062
16824-89-8*2
77.8 DioxohydrazineONNO (g)O=NN=O172.89171.13± 0.14kJ/mol60.01228 ±
0.00062
16824-89-8*0
75.5 Nitrogen sesquioxideONN(O)O (g)O=N-[N](=O)[O]90.7286.15± 0.15kJ/mol76.01168 ±
0.00091
10544-73-7*0
58.3 Dinitrogen tetraoxideO2NNO2 (cr,l)O=N(=O)N(=O)=O-37.86-27.01± 0.19kJ/mol92.0111 ±
0.0012
10544-72-6*500

Most Influential reactions involving HONO (g, trans)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0001631.1 HONO (g, trans) → HONO (g) ΔrH°(0 K) = 0 ± 0 cm-1Sironneau 2010, Ruscic G3B3
0.4071716.6 HOONO (g, trans, perp) H2O (g) → HONO (g, trans) H2O2 (g) ΔrH°(0 K) = 6.93 ± 0.15 kcal/molMcGrath 2005
0.3471623.1 HONO (g, trans) → [HONO]+ (g, trans) ΔrH°(0 K) = 10.97 ± 0.03 eVTaatjes 2004
0.3381632.1 HONO (g, trans) → HONO (g, cis) ΔrH°(0 K) = 141 ± 35 cm-1Varma 1976
0.2181653.5 HOON (g, trans) → HONO (g, trans) ΔrH°(0 K) = -177.0 ± 5 kJ/molTalipov 2013, est unc
0.1951623.9 HONO (g, trans) → [HONO]+ (g, trans) ΔrH°(0 K) = 10.959 ± 0.040 eVRuscic W1RO
0.1841653.2 HOON (g, trans) → HONO (g, trans) ΔrH°(0 K) = -41.47 ± 1.3 kcal/molRuscic G4
0.1651632.2 HONO (g, trans) → HONO (g, cis) ΔrH°(0 K) = 100 ± 50 cm-1Sironneau 2010, est unc
0.1591653.1 HOON (g, trans) → HONO (g, trans) ΔrH°(0 K) = -41.73 ± 1.4 kcal/molRuscic G3X
0.1501633.12 HONO (g, trans) → HONO (g, cis) ΔrH°(0 K) = 0.30 ± 0.15 kcal/molFeller 2012, est unc
0.1451662.5 HN(OO) (g) → HONO (g, trans) ΔrH°(0 K) = -83.55 ± 1.2 kcal/molRuscic W1RO
0.1381625.8 [HONO]- (g, trans) → HONO (g, trans) ΔrH°(0 K) = 0.300 ± 0.050 eVRuscic W1RO
0.1231662.2 HN(OO) (g) → HONO (g, trans) ΔrH°(0 K) = -83.50 ± 1.3 kcal/molRuscic G4
0.1231662.4 HN(OO) (g) → HONO (g, trans) ΔrH°(0 K) = -83.69 ± 1.3 kcal/molRuscic CBS-n
0.1221658.5 HNOO (g, cis) → HONO (g, trans) ΔrH°(0 K) = -75.48 ± 1.2 kcal/molRuscic W1RO
0.1061662.1 HN(OO) (g) → HONO (g, trans) ΔrH°(0 K) = -84.40 ± 1.4 kcal/molRuscic G3X
0.1041658.2 HNOO (g, cis) → HONO (g, trans) ΔrH°(0 K) = -74.99 ± 1.3 kcal/molRuscic G4
0.1041658.4 HNOO (g, cis) → HONO (g, trans) ΔrH°(0 K) = -74.20 ± 1.3 kcal/molRuscic CBS-n
0.0901658.1 HNOO (g, cis) → HONO (g, trans) ΔrH°(0 K) = -75.15 ± 1.4 kcal/molRuscic G3X
0.0841633.11 HONO (g, trans) → HONO (g, cis) ΔrH°(0 K) = 0.43 ± 0.20 kcal/molKarton 2011


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122e of the Thermochemical Network, Argonne National Laboratory (2019); available at ATcT.anl.gov
4   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
5   J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.