Selected ATcT [1, 2] enthalpy of formation based on version 1.122e of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122d [4] to include chemical species related to methyl acetate and methyl formate [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
MethanolCH3OH (l)CO-235.31-238.64± 0.16kJ/mol32.04186 ±
0.00090
67-56-1*500

Top contributors to the provenance of ΔfH° of CH3OH (l)

The 20 contributors listed below account only for 64.6% of the provenance of ΔfH° of CH3OH (l).
A total of 252 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
20.02396.2 CH3OH (g) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -182.72 ± 0.05 (×1.509) kcal/molRossini 1932a, Domalski 1972, Weltner 1951, Rossini 1934a, note old units, mw conversion
8.32444.1 [CH2OH]+ (g) → CH2O (g) H+ (g) ΔrH°(0 K) = 704.98 ± 0.39 kJ/molCzako 2009
4.12398.1 CH3OH (g) → CH4 (g) O (g, singlet) ΔrH°(0 K) = 133.94 ± 0.17 kcal/molNguyen 2015a
3.72397.1 CH3OH (g) → CH3 (g) OH (g) ΔrH°(0 K) = 90.12 ± 0.17 kcal/molNguyen 2015a
3.52400.1 CH3OH (g) → CH2 (g, triplet) H2O (g) ΔrH°(0 K) = 81.77 ± 0.17 kcal/molNguyen 2015a
3.42399.1 CH3OH (g) → CH2 (g, singlet) H2O (g) ΔrH°(0 K) = 90.84 ± 0.17 kcal/molNguyen 2015a
3.42467.1 CH3OH (g) → CH2O (g) H2 (g) ΔrH°(0 K) = 20.28 ± 0.17 kcal/molNguyen 2015a
3.02403.1 CH3OH (l) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(303.15 K) = -725.36 ± 0.13 (×6.442) kJ/molChao 1965, mw conversion
2.62510.6 CH3OH (g) → HCOH (g, trans) H2 (g) ΔrH°(0 K) = 72.44 ± 0.17 kcal/molNguyen 2015a
1.52443.10 CH2OH (g) → CH2O (g) H (g) ΔrH°(0 K) = 121.88 ± 0.46 (×1.414) kJ/molMarenich 2003b, note unc2
1.5118.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
1.32442.1 CH3OH (g) → [CH2OH]+ (g) H (g) ΔrH°(0 K) = 11.6454 ± 0.0017 eVBorkar 2011
1.32390.11 CH3OH (g) → 4 H (g) C (g) O (g) ΔrH°(0 K) = 480.94 ± 0.30 kcal/molKarton 2011
1.01888.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
0.92443.1 CH2OH (g) → CH2O (g) H (g) ΔrH°(0 K) = 10160 ± 70 cm-1Ryazanov 2012
0.92414.6 CH2OH2 (g) → CH3OH (g) ΔrH°(0 K) = -81.83 ± 0.17 kcal/molNguyen 2015a
0.82416.7 CH2OH2 (g) → CH2 (g, singlet) H2O (g) ΔrH°(0 K) = 9.01 ± 0.17 kcal/molNguyen 2015a
0.82531.11 [HCO]+ (g) → H+ (g) CO (g) ΔrH°(0 K) = 586.51 ± 0.2 kJ/molCzako 2008
0.82401.6 CH3OH (l) → CH3OH (g) ΔrH°(298.15 K) = 37.684 ± 0.060 kJ/molSvoboda 1973
0.82401.5 CH3OH (l) → CH3OH (g) ΔrH°(298.15 K) = 37.677 ± 0.060 kJ/molFiock 1931, Rossini 1932a

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3OH (l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
98.1 MethanolCH3OH (g)CO-190.06-200.95± 0.16kJ/mol32.04186 ±
0.00090
67-56-1*0
71.6 Hydroxymethylium[CH2OH]+ (g)[CH2+]O717.65709.71± 0.19kJ/mol31.03337 ±
0.00088
18682-95-6*0
46.0 Methanol cation[CH3OH]+ (g)[CH3+]O856.79846.47± 0.33kJ/mol32.04131 ±
0.00090
12538-91-9*0
37.3 HydroxymethylCH2OH (g)[CH2]O-10.58-16.89± 0.28kJ/mol31.03392 ±
0.00088
2597-43-5*0
36.9 MethoxyCH3O (g)C[O]28.7921.42± 0.29kJ/mol31.03392 ±
0.00088
2143-68-2*0
36.6 Methoxide[CH3O]- (g)C[O-]-122.68-130.41± 0.30kJ/mol31.03447 ±
0.00088
3315-60-4*0
30.1 Methyl nitriteCH3ONO (g)CON=O-55.67-66.34± 0.46kJ/mol61.0401 ±
0.0010
624-91-9*0
30.1 Methyl nitriteCH3ONO (g, cis)CON=O-55.67-67.45± 0.46kJ/mol61.0401 ±
0.0010
624-91-9*2
24.1 Methyl nitriteCH3ONO (cr,l)CON=O-88.91± 0.56kJ/mol61.0401 ±
0.0010
624-91-9*500
22.2 Methanol dimer(CH3OH)2 (g)CO.CO-398.5-419.2± 1.4kJ/mol64.0837 ±
0.0018
42845-44-3*0

Most Influential reactions involving CH3OH (l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.2492401.5 CH3OH (l) → CH3OH (g) ΔrH°(298.15 K) = 37.677 ± 0.060 kJ/molFiock 1931, Rossini 1932a
0.2492401.6 CH3OH (l) → CH3OH (g) ΔrH°(298.15 K) = 37.684 ± 0.060 kJ/molSvoboda 1973
0.1832401.4 CH3OH (l) → CH3OH (g) ΔrH°(298.15 K) = 37.66 ± 0.07 kJ/molPolak 1971, note unc
0.1282401.12 CH3OH (l) → CH3OH (g) ΔrH°(298.15 K) = 9.00 ± 0.02 kcal/molGreen 1960, Rossini 1934a
0.0342403.1 CH3OH (l) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(303.15 K) = -725.36 ± 0.13 (×6.442) kJ/molChao 1965, mw conversion
0.0322401.11 CH3OH (l) → CH3OH (g) ΔrH°(298.15 K) = 8.97 ± 0.03 (×1.325) kcal/molWadso 1966a
0.0242401.1 CH3OH (l) → CH3OH (g) ΔrH°(298.15 K) = 37.83 ± 0.19 kJ/molMajer 1985
0.0222401.7 CH3OH (l) → CH3OH (g) ΔrH°(298.15 K) = 37.65 ± 0.20 kJ/molKonicek 1973, note unc
0.0192401.13 CH3OH (l) → CH3OH (g) ΔrH°(273.15 K) = 9.232 ± 0.051 kcal/molStaveley 1949
0.0152401.8 CH3OH (l) → CH3OH (g) ΔrH°(298.15 K) = 9.066 ± 0.017 (×3.364) kcal/molMcCurdy 1963, note unc
0.0092402.6 CH3OH (l) → CH3OH (g) ΔrG°(297.497 K) = 4.506 ± 0.098 (×3.152) kJ/molBoublik 1972, 3rd Law
0.0092402.4 CH3OH (l) → CH3OH (g) ΔrG°(295.795 K) = 4.704 ± 0.102 (×3.084) kJ/molGarriga 1996, 3rd Law
0.0082401.10 CH3OH (l) → CH3OH (g) ΔrH°(336.96 K) = 8.591 ± 0.080 kcal/molMathews 1926, note unc3
0.0072402.2 CH3OH (l) → CH3OH (g) ΔrG°(298.910 K) = 4.372 ± 0.098 (×3.437) kJ/molThermoData 2004, 3rd Law
0.0072402.12 CH3OH (l) → CH3OH (g) ΔrG°(286.746 K) = 5.750 ± 0.160 (×2.134) kJ/molRadulescu 1938, ThermoData 2004, 3rd Law
0.0072402.10 CH3OH (l) → CH3OH (g) ΔrG°(295.468 K) = 4.772 ± 0.103 (×3.364) kJ/molJoukovsky 1934, ThermoData 2004, 3rd Law
0.0062402.14 CH3OH (l) → CH3OH (g) ΔrG°(330.306 K) = 0.921 ± 0.367 kJ/molDulitskaya 1945, ThermoData 2004, 3rd Law
0.0052401.3 CH3OH (l) → CH3OH (g) ΔrH°(298.15 K) = 38.00 ± 0.40 kJ/molNBS Tables 1989
0.0052403.7 CH3OH (l) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(293.15 K) = -174.19 ± 0.5 kcal/molFarbenfabrik 1931, Rossini 1932a, est unc
0.0052403.6 CH3OH (l) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(293.15 K) = -174.03 ± 0.5 kcal/molRoth 1932a, Roth 1931, Rossini 1932a, est unc


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122e of the Thermochemical Network, Argonne National Laboratory (2019); available at ATcT.anl.gov
4   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
5   J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.