Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Chloryl ion[OClO]+ (g)O=[Cl+]=O1100.151097.49± 0.52kJ/mol67.4510 ±
0.0011
25052-55-5*0

Representative Geometry of [OClO]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [OClO]+ (g)

The 15 contributors listed below account for 90.4% of the provenance of ΔfH° of [OClO]+ (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
63.0784.1 OClO (g) → [OClO]+ (g) ΔrH°(0 K) = 10.350 ± 0.005 eVFlesch 1993
4.0788.1 OClO (g) → ClO (g) O (g) ΔrH°(0 K) = 247.3 ± 0.5 (×1.325) kJ/molDelmdahl 2001
3.9784.2 OClO (g) → [OClO]+ (g) ΔrH°(0 K) = 10.36 ± 0.02 eVFlesch 1993
3.9784.3 OClO (g) → [OClO]+ (g) ΔrH°(0 K) = 10.36 ± 0.02 eVCornford 1971b, Cornford 1972
2.5783.12 OClO (g) → 2 O (g) Cl (g) ΔrH°(0 K) = 122.47 ± 0.20 kcal/molKarton 2009c
2.5788.2 OClO (g) → ClO (g) O (g) ΔrH°(0 K) = 59.0 ± 0.2 kcal/molDavis 1996
1.9790.1 OClO (g) Br (g) → BrO (g) ClO (g) ΔrG°(298.15 K) = 6.80 ± 0.86 kJ/molClyne 1977, 3rd Law
1.5786.8 [OClO]+ (g) → Cl (g) + 2 O (g) ΔrH°(0 K) = -117.03 ± 1. kcal/molThanthiriwatte 2012, est unc
1.1805.7 OCl(O)O (g) → Cl (g) + 3 O (g) ΔrH°(0 K) = 160.08 ± 0.40 kcal/molKarton 2009c
1.1783.11 OClO (g) → 2 O (g) Cl (g) ΔrH°(0 K) = 122.33 ± 0.30 kcal/molKarton 2006, Karton 2009c, Karton 2011
1.1788.10 OClO (g) → ClO (g) O (g) ΔrH°(0 K) = 59.03 ± 0.30 kcal/molKarton 2009c
1.0810.7 OCl(O)O (g) ClO (g) → 2 OClO (g) ΔrH°(0 K) = -21.42 ± 0.20 kcal/molKarton 2009c
0.9784.10 OClO (g) → [OClO]+ (g) ΔrH°(0 K) = 10.382 ± 0.040 eVRuscic W1RO
0.8796.9 ClOO (g) → OClO (g) ΔrH°(0 K) = -0.45 ± 0.25 kcal/molKarton 2009c, Karton 2011
0.6783.10 OClO (g) → 2 O (g) Cl (g) ΔrH°(0 K) = 122.31 ± 0.40 kcal/molKarton 2009c, Martin 2008, Karton 2011

Top 10 species with enthalpies of formation correlated to the ΔfH° of [OClO]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
50.5 Chlorine dioxideOClO (g)O=Cl=O101.3298.85± 0.27kJ/mol67.4515 ±
0.0011
10049-04-4*0
38.2 Chlorite[OClO]- (g)O=[Cl-]=O-105.62-107.80± 0.35kJ/mol67.4520 ±
0.0011
14998-27-7*0
29.8 PerchlorylOCl(O)O (g)O=Cl(=O)[O]191.68186.01± 0.61kJ/mol83.4509 ±
0.0013
13932-10-0*0
12.3 Chlorous acidHOClO (g)OCl=O25.7520.69± 0.63kJ/mol68.4594 ±
0.0011
13898-47-0*0
9.5 ChlorodioxidanylClOO (g)ClO[O]103.91102.82± 0.37kJ/mol67.4515 ±
0.0011
17376-09-9*0
9.5 Peroxyhypochlorite[ClOO]- (g)ClO[O-]-249.23-248.20± 0.37kJ/mol67.4520 ±
0.0011
224299-14-3*0
8.5 PerchloryloxyOCl(O)(O)O (g)O=Cl(=O)(=O)[O]248.6241.0± 1.8kJ/mol99.4503 ±
0.0015
12133-63-0*0
8.2 Chlorodioxidenium[ClOO]+ (g)ClO[O+]1202.71200.4± 3.4kJ/mol67.4510 ±
0.0011
64710-10-7*0
4.8 Bromine monoxideBrO (g)Br[O]131.14123.61± 0.28kJ/mol95.9034 ±
0.0010
15656-19-6*0
4.6 Perchloryl cation[OCl(O)O]+ (g)O=[Cl+](=O)[O]1252.01246.3± 2.5kJ/mol83.4504 ±
0.0013
23594-88-9*0

Most Influential reactions involving [OClO]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.856784.1 OClO (g) → [OClO]+ (g) ΔrH°(0 K) = 10.350 ± 0.005 eVFlesch 1993
0.444797.4 [ClOO]+ (g) → [OClO]+ (g) ΔrH°(0 K) = -25.58 ± 1.2 kcal/molRuscic W1RO
0.053784.2 OClO (g) → [OClO]+ (g) ΔrH°(0 K) = 10.36 ± 0.02 eVFlesch 1993
0.053784.3 OClO (g) → [OClO]+ (g) ΔrH°(0 K) = 10.36 ± 0.02 eVCornford 1971b, Cornford 1972
0.038797.2 [ClOO]+ (g) → [OClO]+ (g) ΔrH°(0 K) = -20.44 ± 1.3 (×3.152) kcal/molRuscic G4
0.035797.3 [ClOO]+ (g) → [OClO]+ (g) ΔrH°(0 K) = -20.32 ± 1.6 (×2.65) kcal/molRuscic CBS-n
0.019797.1 [ClOO]+ (g) → [OClO]+ (g) ΔrH°(0 K) = -30.20 ± 1.4 (×4.088) kcal/molRuscic G3X
0.015786.8 [OClO]+ (g) → Cl (g) + 2 O (g) ΔrH°(0 K) = -117.03 ± 1. kcal/molThanthiriwatte 2012, est unc
0.013784.10 OClO (g) → [OClO]+ (g) ΔrH°(0 K) = 10.382 ± 0.040 eVRuscic W1RO
0.004784.7 OClO (g) → [OClO]+ (g) ΔrH°(0 K) = 10.400 ± 0.073 eVRuscic G4
0.002784.6 OClO (g) → [OClO]+ (g) ΔrH°(0 K) = 10.395 ± 0.093 eVRuscic G3X
0.001784.9 OClO (g) → [OClO]+ (g) ΔrH°(0 K) = 10.485 ± 0.099 (×1.354) eVRuscic CBS-n


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
6   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.