Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3]This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6]. |
|||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
Representative Geometry of [HOCl]- (g) | |||||||||||||||||||||||||||||||||||
spin ON spin OFF | |||||||||||||||||||||||||||||||||||
Top contributors to the provenance of ΔfH° of [HOCl]- (g)The 6 contributors listed below account for 92.3% of the provenance of ΔfH° of [HOCl]- (g).Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network. | |||||||||||||||||||||||||||||||||||
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference |
---|---|---|---|---|
0.258 | 871.7 | [HOCl]- (g) → HOCl (g)  | ΔrH°(0 K) = -2.801 ± 0.050 eV | Ruscic W1RO |
0.173 | 871.4 | [HOCl]- (g) → HOCl (g)  | ΔrH°(0 K) = -2.863 ± 0.061 eV | Ruscic G4 |
0.152 | 873.7 | [HOCl]- (g) → H (g) + O (g) + Cl (g)  | ΔrH°(0 K) = 92.16 ± 1.50 kcal/mol | Ruscic W1RO |
0.134 | 873.4 | [HOCl]- (g) → H (g) + O (g) + Cl (g)  | ΔrH°(0 K) = 90.22 ± 1.60 kcal/mol | Ruscic G4 |
0.116 | 873.3 | [HOCl]- (g) → H (g) + O (g) + Cl (g)  | ΔrH°(0 K) = 92.19 ± 1.72 kcal/mol | Ruscic G3X |
0.089 | 871.3 | [HOCl]- (g) → HOCl (g)  | ΔrH°(0 K) = -2.778 ± 0.085 eV | Ruscic G3X |
0.076 | 871.6 | [HOCl]- (g) → HOCl (g)  | ΔrH°(0 K) = -2.828 ± 0.092 eV | Ruscic CBS-n |
1 |
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner, Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited. J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y] |
|
2 |
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner, Active Thermochemical Tables: Thermochemistry for the 21st Century. J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078] |
|
3 |
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov |
|
4 |
B. Ruscic, Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry. J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346] |
|
5 |
T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton, On the HCN – HNC Energy Difference. J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406] |
|
6 |
L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton, Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules. J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970] |
|
7 |
B. Ruscic, Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables. Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605] |