Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
CyclopentaneCH2(CH2CH2CH2CH2) (l)C1CCCC1-106.29± 0.44kJ/mol70.1329 ±
0.0041
287-92-3*590

Top contributors to the provenance of ΔfH° of CH2(CH2CH2CH2CH2) (l)

The 20 contributors listed below account only for 88.6% of the provenance of ΔfH° of CH2(CH2CH2CH2CH2) (l).
A total of 24 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
28.92899.1 CH2(CH2CH2CH2CH2) (l) + 15/2 O2 (g) → 5 CO2 (g) + 5 H2O (l) ΔrH°(298.15 K) = -3290.85 ± 0.72 kJ/molJohnson 1946
14.72904.2 CH2(CH2CHCHCH2) (l) + 7 O2 (g) → 5 CO2 (g) + 4 H2O (l) ΔrH°(298.15 K) = -744.54 ± 0.14 kcal/molLabbauf 1961
9.52899.3 CH2(CH2CH2CH2CH2) (l) + 15/2 O2 (g) → 5 CO2 (g) + 5 H2O (l) ΔrH°(298.15 K) = -786.61 ± 0.30 kcal/molSpitzer 1947
7.52903.2 CH2(CH2CHCHCH2) (l) → CH2(CH2CHCHCH2) (g) ΔrH°(300.15 K) = 6.78 ± 0.1 kcal/molLister 1941, est unc
5.92904.1 CH2(CH2CHCHCH2) (l) + 7 O2 (g) → 5 CO2 (g) + 4 H2O (l) ΔrH°(298.15 K) = -744.45 ± 0.17 (×1.297) kcal/molProsen 1944, Labbauf 1961, Epstein 1949
4.32901.1 CH2(CH2CHCHCH2) (g) H2 (g) → CH2(CH2CH2CH2CH2) (g) ΔrH°(298.15 K) = -26.67 ± 0.06 kcal/molDolliver 1937
4.22899.4 CH2(CH2CH2CH2CH2) (l) + 15/2 O2 (g) → 5 CO2 (g) + 5 H2O (l) ΔrH°(298.15 K) = -786.84 ± 0.14 (×3.221) kcal/molKaarsemaker 1952, as quoted by Cox 1970
2.9118.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
2.12903.1 CH2(CH2CHCHCH2) (l) → CH2(CH2CHCHCH2) (g) ΔrH°(298.15 K) = 6.71 ± 0.07 (×2.65) kcal/molWagman 1949, Forziati 1950, Epstein 1949
1.02905.1 CH2(CH2CHCHCH2) (l) H2 (g) → CH2(CH2CH2CH2CH2) (l) ΔrH°(298.15 K) = -26.2 ± 0.2 (×2) kcal/molRogers 1971
1.02928.5 CH2(CH2CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH2CH3 (g) ΔrH°(0 K) = 5.53 ± 0.85 kcal/molRuscic W1RO
0.82928.2 CH2(CH2CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH2CH3 (g) ΔrH°(0 K) = 5.96 ± 0.90 kcal/molRuscic G4
0.82928.4 CH2(CH2CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH2CH3 (g) ΔrH°(0 K) = 5.76 ± 0.90 kcal/molRuscic CBS-n
0.82928.1 CH2(CH2CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH2CH3 (g) ΔrH°(0 K) = 5.97 ± 0.90 kcal/molRuscic G3X
0.71729.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
0.72928.3 CH2(CH2CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH3 (g) → CH2(CH2CH2CH2CH2) (g) CH3CH2CH2CH2CH2CH3 (g) ΔrH°(0 K) = 5.82 ± 1.0 kcal/molRuscic CBS-n
0.52897.5 CH2(CH2CH2CH2CH2) (g) H2 (g) → CH3CH2CH2CH2CH3 (g) ΔrH°(0 K) = -16.46 ± 1.2 kcal/molRuscic W1RO
0.42897.4 CH2(CH2CH2CH2CH2) (g) H2 (g) → CH3CH2CH2CH2CH3 (g) ΔrH°(0 K) = -16.48 ± 1.3 kcal/molRuscic CBS-n
0.42897.2 CH2(CH2CH2CH2CH2) (g) H2 (g) → CH3CH2CH2CH2CH3 (g) ΔrH°(0 K) = -16.30 ± 1.3 kcal/molRuscic G4
0.41852.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH2(CH2CH2CH2CH2) (l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.4 CyclopentaneCH2(CH2CH2CH2CH2) (g)C1CCCC1-45.04-77.61± 0.44kJ/mol70.1329 ±
0.0041
287-92-3*0
85.5 CyclopenteneCH2(CH2CHCHCH2) (g)C1CC=CC158.0933.82± 0.45kJ/mol68.1170 ±
0.0040
142-29-0*0
72.0 CyclopentadieneCH2(CHCHCHCH) (l)C1C=CC=C1108.73± 0.61kJ/mol66.1011 ±
0.0040
542-92-7*590
62.7 CyclopenteneCH2(CH2CHCHCH2) (l)C1CC=CC14.98± 0.42kJ/mol68.1170 ±
0.0040
142-29-0*590
54.6 CyclopentadieneCH2(CHCHCHCH) (g)C1C=CC=C1149.85132.73± 0.76kJ/mol66.1011 ±
0.0040
542-92-7*0
26.4 WaterH2O (cr, l, eq.press.)O-286.310-285.838± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*499
26.4 WaterH2O (cr,l)O-286.308-285.836± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*500
26.4 WaterH2O (l, eq.press.)O-285.838± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*589
26.4 WaterH2O (l)O-285.836± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*590
26.4 Oxonium[H3O]+ (aq)[OH3+]-285.836± 0.027kJ/mol19.02267 ±
0.00037
13968-08-6*800

Most Influential reactions involving CH2(CH2CH2CH2CH2) (l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9912910.1 CH2(CHCHCHCH) (l) + 2 H2 (g) → CH2(CH2CH2CH2CH2) (l) ΔrH°(298.15 K) = -51.4 ± 0.1 kcal/molRoth 1980, Roth 1991
0.4272898.1 CH2(CH2CH2CH2CH2) (l) → CH2(CH2CH2CH2CH2) (g) ΔrH°(298.15 K) = 28.72 ± 0.07 kJ/molMajer 1985
0.3262899.1 CH2(CH2CH2CH2CH2) (l) + 15/2 O2 (g) → 5 CO2 (g) + 5 H2O (l) ΔrH°(298.15 K) = -3290.85 ± 0.72 kJ/molJohnson 1946
0.2992898.3 CH2(CH2CH2CH2CH2) (l) → CH2(CH2CH2CH2CH2) (g) ΔrH°(298.15 K) = 6.86 ± 0.02 kcal/molAston 1943, est unc
0.1942898.2 CH2(CH2CH2CH2CH2) (l) → CH2(CH2CH2CH2CH2) (g) ΔrH°(298.15 K) = 6.83 ± 0.02 (×1.242) kcal/molMcCullough 1959, note unc
0.1072899.3 CH2(CH2CH2CH2CH2) (l) + 15/2 O2 (g) → 5 CO2 (g) + 5 H2O (l) ΔrH°(298.15 K) = -786.61 ± 0.30 kcal/molSpitzer 1947
0.0742898.4 CH2(CH2CH2CH2CH2) (l) → CH2(CH2CH2CH2CH2) (g) ΔrH°(298.15 K) = 6.86 ± 0.04 kcal/molProsen 1946
0.0482905.1 CH2(CH2CHCHCH2) (l) H2 (g) → CH2(CH2CH2CH2CH2) (l) ΔrH°(298.15 K) = -26.2 ± 0.2 (×2) kcal/molRogers 1971
0.0472899.4 CH2(CH2CH2CH2CH2) (l) + 15/2 O2 (g) → 5 CO2 (g) + 5 H2O (l) ΔrH°(298.15 K) = -786.84 ± 0.14 (×3.221) kcal/molKaarsemaker 1952, as quoted by Cox 1970
0.0092905.2 CH2(CH2CHCHCH2) (l) H2 (g) → CH2(CH2CH2CH2CH2) (l) ΔrH°(298.15 K) = -25.7 ± 0.5 (×1.795) kcal/molTurner 1968a, Turner 1968, est unc


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
6   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.