Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
2-Cyclopropen-1-ylium-1-yl[C(CHCH)]+ (g)C1=[C+]=C11382.01381.0± 1.1kJ/mol38.0474 ±
0.0024
85398-75-0*0

Representative Geometry of [C(CHCH)]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [C(CHCH)]+ (g)

The 20 contributors listed below account only for 88.6% of the provenance of ΔfH° of [C(CHCH)]+ (g).
A total of 22 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
24.62688.2 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.17 ± 0.02 eVHemberger 2010
10.92688.1 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.15 ± 0.03 eVClauberg 1991, Clauberg 1992, Clauberg 1992a
8.02688.8 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.164 ± 0.035 eVLau 2006a, Lau 2006b
6.12688.7 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.172 ± 0.040 eVRuscic W1RO
3.92688.9 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.151 ± 0.050 eVHemberger 2010, est unc
3.72733.1 [C(CHCH)]+ (g) → [CH2CC]+ (g) ΔrH°(0 K) = 178.2 ± 4.8 kJ/molLau 2006b, est unc
3.22690.5 [C(CHCH)]+ (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 1181.0 ± 6.0 kJ/molLau 2006b, est unc
3.12725.4 [C(CHCH)]+ (g) → [HCCCH]+ (g) ΔrH°(0 K) = 30.9 ± 4.8 kJ/molLau 2006b, est unc
2.92690.4 [C(CHCH)]+ (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 283.62 ± 1.50 kcal/molRuscic W1RO
2.92725.3 [C(CHCH)]+ (g) → [HCCCH]+ (g) ΔrH°(0 K) = 7.12 ± 1.2 kcal/molRuscic W1RO
2.62690.2 [C(CHCH)]+ (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 283.08 ± 1.60 kcal/molRuscic G4
2.62690.3 [C(CHCH)]+ (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 282.16 ± 1.60 kcal/molRuscic CBS-n
2.42725.2 [C(CHCH)]+ (g) → [HCCCH]+ (g) ΔrH°(0 K) = 6.49 ± 1.3 kcal/molRuscic G4
2.22690.1 [C(CHCH)]+ (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 281.92 ± 1.72 kcal/molRuscic G3X
1.82688.4 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.184 ± 0.073 eVRuscic G4
1.72688.6 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.187 ± 0.075 eVRuscic CBS-n
1.62687.6 C(CHCH) (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 2068.97 ± 1.0 kJ/molVazquez 2009
1.32687.7 C(CHCH) (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 2068.71 ± 1.1 kJ/molVazquez 2009, est unc
1.12688.3 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.205 ± 0.093 eVRuscic G3X
1.02688.5 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.209 ± 0.099 eVRuscic CBS-n

Top 10 species with enthalpies of formation correlated to the ΔfH° of [C(CHCH)]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
32.3 CyclopropenylideneC(CHCH) (g)C1=C=C1497.07496.11± 0.46kJ/mol38.0480 ±
0.0024
16165-40-5*0
23.2 PropadienylideneCH2CC (g)C=C=[C]554.43555.57± 0.41kJ/mol38.0480 ±
0.0024
60731-10-4*0
22.6 Propadienylidenide[CH2CC]- (g)C=C=[C-]381.16382.06± 0.42kJ/mol38.0485 ±
0.0024
109292-49-1*0
20.4 Propynylidene cation[HCCCH]+ (g)C#C[CH+]1410.81413.4± 1.3kJ/mol38.0474 ±
0.0024
75123-91-0*0
14.6 PropynylideneHCCCH (g)[CH]=C=[CH]543.38546.38± 0.63kJ/mol38.0480 ±
0.0024
67152-18-5*0
14.6 PropynylideneHCCCH (g, triplet)[CH]=C=[CH]543.38546.38± 0.63kJ/mol38.0480 ±
0.0024
67152-18-5*1
12.6 Carbon atomC (g)[C]711.407716.892± 0.048kJ/mol12.01070 ±
0.00080
7440-44-0*0
12.6 Carbon atomC (g, triplet)[C]711.407716.892± 0.048kJ/mol12.01070 ±
0.00080
7440-44-0*1
12.6 Carbon atomC (g, singlet)[C]833.338838.485± 0.048kJ/mol12.01070 ±
0.00080
7440-44-0*2
12.6 Carbon atomC (g, quintuplet)[C]1114.9701120.117± 0.048kJ/mol12.01070 ±
0.00080
7440-44-0*3

Most Influential reactions involving [C(CHCH)]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.2962688.2 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.17 ± 0.02 eVHemberger 2010
0.1312688.1 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.15 ± 0.03 eVClauberg 1991, Clauberg 1992, Clauberg 1992a
0.1202733.1 [C(CHCH)]+ (g) → [CH2CC]+ (g) ΔrH°(0 K) = 178.2 ± 4.8 kJ/molLau 2006b, est unc
0.0962688.8 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.164 ± 0.035 eVLau 2006a, Lau 2006b
0.0932725.4 [C(CHCH)]+ (g) → [HCCCH]+ (g) ΔrH°(0 K) = 30.9 ± 4.8 kJ/molLau 2006b, est unc
0.0852725.3 [C(CHCH)]+ (g) → [HCCCH]+ (g) ΔrH°(0 K) = 7.12 ± 1.2 kcal/molRuscic W1RO
0.0742688.7 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.172 ± 0.040 eVRuscic W1RO
0.0722725.2 [C(CHCH)]+ (g) → [HCCCH]+ (g) ΔrH°(0 K) = 6.49 ± 1.3 kcal/molRuscic G4
0.0472688.9 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.151 ± 0.050 eVHemberger 2010, est unc
0.0332690.5 [C(CHCH)]+ (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 1181.0 ± 6.0 kJ/molLau 2006b, est unc
0.0302690.4 [C(CHCH)]+ (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 283.62 ± 1.50 kcal/molRuscic W1RO
0.0272725.1 [C(CHCH)]+ (g) → [HCCCH]+ (g) ΔrH°(0 K) = 4.82 ± 1.4 (×1.509) kcal/molRuscic G3X
0.0262690.2 [C(CHCH)]+ (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 283.08 ± 1.60 kcal/molRuscic G4
0.0262690.3 [C(CHCH)]+ (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 282.16 ± 1.60 kcal/molRuscic CBS-n
0.0232690.1 [C(CHCH)]+ (g) → 3 C (g) + 2 H (g) ΔrH°(0 K) = 281.92 ± 1.72 kcal/molRuscic G3X
0.0222688.4 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.184 ± 0.073 eVRuscic G4
0.0212688.6 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.187 ± 0.075 eVRuscic CBS-n
0.0132688.3 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.205 ± 0.093 eVRuscic G3X
0.0122688.5 C(CHCH) (g) → [C(CHCH)]+ (g) ΔrH°(0 K) = 9.209 ± 0.099 eVRuscic CBS-n
0.0092757.1 [CCCH]+ (g) H2 (g) → [C(CHCH)]+ (g) H (g) ΔrH°(300 K) = 1 ± 4 kcal/molSmith 1984, Smith 1987, est unc


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
6   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.