Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Bromine monochlorideBrCl (g)BrCl21.88214.439± 0.060kJ/mol115.3567 ±
0.0013
13863-41-7*0

Representative Geometry of BrCl (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of BrCl (g)

The 2 contributors listed below account for 92.9% of the provenance of ΔfH° of BrCl (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
84.4934.2 Br2 (cr,l) → Br2 (g) ΔrH°(298.15 K) = 7.386 ± 0.027 kcal/molHildenbrand 1958
8.51005.6 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(295.15 K) = 5.419 ± 0.049 kJ/molTellinghuisen 2003, 3rd Law

Top 10 species with enthalpies of formation correlated to the ΔfH° of BrCl (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
93.7 DibromineBr2 (g)BrBr45.6830.89± 0.12kJ/mol159.8080 ±
0.0020
7726-95-6*0
93.7 Bromine atomBr (g)[Br]117.917111.855± 0.056kJ/mol79.90400 ±
0.00100
10097-32-2*0
93.7 Bromine atomBr (g, 2P3/2)[Br]117.917111.855± 0.056kJ/mol79.90400 ±
0.00100
10097-32-2*1
93.7 Bromine atomBr (g, 2P1/2)[Br]162.001155.939± 0.056kJ/mol79.90400 ±
0.00100
10097-32-2*2
93.7 BromideBr- (g)[Br-]-206.620-212.682± 0.056kJ/mol79.90455 ±
0.00100
24959-67-9*0
93.2 BromoniumBr+ (g)[Br+]1257.7781251.715± 0.057kJ/mol79.90345 ±
0.00100
22541-56-6*0
78.3 Iodine monobromideIBr (g)IBr49.71840.771± 0.067kJ/mol206.8085 ±
0.0010
7789-33-5*0
46.1 Diatomic bromine cation[Br2]+ (g)Br[Br+]1060.321045.37± 0.23kJ/mol159.8075 ±
0.0020
12595-71-0*0
28.1 DibromophosgeneCOBr2 (g)C(Br)(Br)=O-97.96-113.89± 0.37kJ/mol187.8181 ±
0.0022
593-95-3*0
27.3 Hydrogen bromideHBr (g)Br-27.72-35.57± 0.16kJ/mol80.9119 ±
0.0010
10035-10-6*0

Most Influential reactions involving BrCl (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.7061005.6 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(295.15 K) = 5.419 ± 0.049 kJ/molTellinghuisen 2003, 3rd Law
0.3171050.1 HOBr (g) Cl (g) → BrCl (g) OH (g) ΔrG°(298.15 K) = -10.14 ± 1.04 kJ/molLoewenstein 1984, Kukui 1996, Monks 1993a, Loewenstein 1984
0.3123982.1 CF3Br (g) Cl2 (g) → CF3Cl (g) BrCl (g) ΔrH°(298.15 K) = -10.69 ± 0.30 kcal/molCoomber 1967b, as quoted by Cox 1970
0.2314004.1 Br2 (g) CCl4 (g) → BrCl (g) CCl3Br (g) ΔrH°(298.15 K) = 8.84 ± 0.30 kcal/molMendenhall 1973, as quoted by Pedley 1986
0.1613983.1 CF3Cl (g) Br2 (g) → CF3Br (g) BrCl (g) ΔrH°(298.15 K) = 10.49 ± 0.40 (×1.044) kcal/molCoomber 1967b, as quoted by Cox 1970
0.1181002.5 BrCl (g) → Br (g) Cl (g) ΔrH°(0 K) = 18027 ± 5 cm-1Tellinghuisen 2003a
0.1171003.9 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(301.15 K) = 5.54 ± 0.12 kJ/molVesper 1934, 3rd Law, est unc
0.0131002.2 BrCl (g) → Br (g) Cl (g) ΔrH°(0 K) = 18023 ± 15 cm-1Brown 1988
0.0081005.2 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(298.15 K) = 5.81 ± 0.45 kJ/molBartlett 1999, 3rd Law
0.0081003.4 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(298.15 K) = 5.45 ± 0.45 kJ/molGray 1930, Vesper 1934, 3rd Law, est unc
0.0071005.5 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(298.15 K) = 5.73 ± 0.49 kJ/molMaric 1994, 3rd Law
0.0041005.4 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(298.15 K) = 4.82 ± 0.10 (×6.442) kJ/molCooper 1998, 3rd Law
0.0031003.11 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(298.15 K) = 4.80 ± 0.45 (×1.477) kJ/molBrauer 1935, 3rd Law, est unc
0.0031004.2 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(462 K) = 7.34 ± 0.70 kJ/molBeeson 1939a, 3rd Law, est unc
0.0031004.8 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(310 K) = 4.89 ± 0.40 (×1.756) kJ/molMattraw 1954, 3rd Law, est unc
0.0011003.7 BrCl (g) → Br2 (g) Cl2 (g) ΔrH°(298.15 K) = 1.31 ± 1.0 kJ/molJost 1931, 2nd Law, est unc
0.0011003.6 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(298.15 K) = 4.73 ± 1.0 kJ/molJost 1931, 3rd Law, est unc
0.0001004.6 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(500 K) = 8.40 ± 1.7 kJ/molSchutza 1938, 3rd Law, est unc
0.0001002.1 BrCl (g) → Br (g) Cl (g) ΔrH°(0 K) = 17934 ± 26 (×3.668) cm-1Clyne 1979, Clyne 1978, Clyne 1978a
0.0001002.9 BrCl (g) → Br (g) Cl (g) ΔrH°(0 K) = 51.62 ± 0.3 kcal/molFeller 2008


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
6   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.