Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Aminomethylium[CH2NH2]+ (g)[CH2+]N763.55751.58± 0.66kJ/mol30.04865 ±
0.00085
488821-23-4*0

Representative Geometry of [CH2NH2]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [CH2NH2]+ (g)

The 20 contributors listed below account only for 76.5% of the provenance of ΔfH° of [CH2NH2]+ (g).
A total of 50 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
47.62124.1 CH3NH2 (g) → [CH2NH2]+ (g) H (g) ΔrH°(0 K) = 10.228 ± 0.008 eVBodi 2006
7.62124.2 CH3NH2 (g) → [CH2NH2]+ (g) H (g) ΔrH°(0 K) = 10.22 ± 0.02 eVHarvey 2004a, note unc2, AE corr
3.52116.1 CH2NH2 (g) → [CH2NH2]+ (g) ΔrH°(0 K) = 6.29 ± 0.03 eVDyke 1989
1.92116.9 CH2NH2 (g) → [CH2NH2]+ (g) ΔrH°(0 K) = 6.255 ± 0.040 eVRuscic W1RO
1.43535.1 [CH3NHCH2]+ (g) CH3NH2 (g) → [CH2NH2]+ (g) (CH3)2NH (g) ΔrH°(0 K) = 0.460 ± 0.025 eVBodi 2006
1.32111.8 CH3NH2 (g) CH4 (g) → CH3CH3 (g) NH3 (g) ΔrH°(0 K) = -8.14 ± 0.25 kcal/molKarton 2011
1.22118.9 [CH2NH2]+ (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 306.77 ± 1.39 kcal/molOliveira 2001
1.23533.1 (CH3)2NH (g) → [CH3NHCH2]+ (g) H (g) ΔrH°(0 K) = 9.768 ± 0.023 eVBodi 2006
1.13525.1 (CH3)2NH (g) NH3 (g) → 2 CH3NH2 (g) ΔrH°(298.15 K) = 4.68 ± 0.40 kcal/molIssoire 1960, as quoted by Cox 1970
1.02118.8 [CH2NH2]+ (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 307.21 ± 1.50 kcal/molOliveira 2001, Ruscic W1RO
1.02110.2 CH3NH2 (l) → CH3NH2 (g) ΔrH°(298.15 K) = 24.3 ± 0.8 (×1.242) kJ/molNBS Tables 1989
0.92104.11 CH3NH2 (g) → C (g) N (g) + 5 H (g) ΔrH°(0 K) = 542.22 ± 0.30 kcal/molKarton 2008, Karton 2011
0.92118.4 [CH2NH2]+ (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 306.33 ± 1.60 kcal/molRuscic G4
0.92118.7 [CH2NH2]+ (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 306.77 ± 1.60 kcal/molRuscic CBS-n
0.82118.3 [CH2NH2]+ (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 306.40 ± 1.72 kcal/molRuscic G3X
0.72115.11 CH2NH2 (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 451.03 ± 0.30 kcal/molKarton 2008, Karton 2011
0.73535.6 [CH3NHCH2]+ (g) CH3NH2 (g) → [CH2NH2]+ (g) (CH3)2NH (g) ΔrH°(0 K) = 0.476 ± 0.035 eVRuscic W1RO
0.63560.1 (CH3)3N (g) → [(CH3)2NCH2]+ (g) H (g) ΔrH°(0 K) = 9.436 ± 0.035 eVBodi 2006, est unc
0.62126.11 CH3NH (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 444.22 ± 0.30 kcal/molKarton 2008, Karton 2011
0.63524.1 (CH3)2NH (l) + 15/2 O2 (g) → 4 CO2 (g) + 7 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -833.42 ± 0.20 kcal/molJaffe 1970, Cox 1970, as quoted by Cox 1970

Top 10 species with enthalpies of formation correlated to the ΔfH° of [CH2NH2]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
41.7 MethylamineCH3NH2 (g)CN-7.01-21.72± 0.31kJ/mol31.05714 ±
0.00088
74-89-5*0
32.1 (Methylamino)methyl cation[CH3NHCH2]+ (g)CN[CH2+]728.81710.19± 0.99kJ/mol44.0752 ±
0.0017
*31277-24-4*0
30.7 Dimethylmethyleneammonium[(CH3)2NCH2]+ (g)C[N+](C)[CH2]695.9670.8± 1.4kJ/mol58.1018 ±
0.0025
28149-27-1*0
26.2 AminomethylCH2NH2 (g)[CH2]N158.90149.06± 0.44kJ/mol30.04920 ±
0.00085
10507-29-6*0
21.1 MethylamidogenCH3NH (g)C[NH]187.21176.56± 0.49kJ/mol30.04920 ±
0.00085
15622-51-2*0
17.1 Methylamidogen anion[CH3NH]- (g)C[NH-]144.95134.12± 0.68kJ/mol30.04975 ±
0.00085
54448-39-4*0
15.3 Trimethylamine(CH3)3N (g)CN(C)C1.16-27.69± 0.92kJ/mol59.1103 ±
0.0025
75-50-3*0
15.2 Dimethylamine(CH3)2NH (g)CNC3.53-18.11± 0.48kJ/mol45.0837 ±
0.0017
124-40-3*0
13.8 Trimethylamine(CH3)3N (l)CN(C)C-49.8± 1.0kJ/mol59.1103 ±
0.0025
75-50-3*500
12.3 (Dimethylamino)methyl(CH3)2NCH2 (g)CN(C)[CH2]165.1142.0± 1.4kJ/mol58.1024 ±
0.0025
30208-47-0*0

Most Influential reactions involving [CH2NH2]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.6052124.1 CH3NH2 (g) → [CH2NH2]+ (g) H (g) ΔrH°(0 K) = 10.228 ± 0.008 eVBodi 2006
0.1403535.1 [CH3NHCH2]+ (g) CH3NH2 (g) → [CH2NH2]+ (g) (CH3)2NH (g) ΔrH°(0 K) = 0.460 ± 0.025 eVBodi 2006
0.0962124.2 CH3NH2 (g) → [CH2NH2]+ (g) H (g) ΔrH°(0 K) = 10.22 ± 0.02 eVHarvey 2004a, note unc2, AE corr
0.0913564.6 [(CH3)2NCH2]+ (g) CH3NH2 (g) → [CH2NH2]+ (g) (CH3)3N (g) ΔrH°(0 K) = 0.796 ± 0.035 eVRuscic W1RO
0.0713535.6 [CH3NHCH2]+ (g) CH3NH2 (g) → [CH2NH2]+ (g) (CH3)2NH (g) ΔrH°(0 K) = 0.476 ± 0.035 eVRuscic W1RO
0.0703564.1 [(CH3)2NCH2]+ (g) CH3NH2 (g) → [CH2NH2]+ (g) (CH3)3N (g) ΔrH°(0 K) = 0.792 ± 0.040 eVBodi 2006, est unc
0.0703564.2 [(CH3)2NCH2]+ (g) CH3NH2 (g) → [CH2NH2]+ (g) (CH3)3N (g) ΔrH°(0 K) = 0.778 ± 0.040 eVRuscic G3X
0.0703564.3 [(CH3)2NCH2]+ (g) CH3NH2 (g) → [CH2NH2]+ (g) (CH3)3N (g) ΔrH°(0 K) = 0.779 ± 0.040 eVRuscic G4
0.0703564.5 [(CH3)2NCH2]+ (g) CH3NH2 (g) → [CH2NH2]+ (g) (CH3)3N (g) ΔrH°(0 K) = 0.771 ± 0.040 eVRuscic CBS-n
0.0562116.1 CH2NH2 (g) → [CH2NH2]+ (g) ΔrH°(0 K) = 6.29 ± 0.03 eVDyke 1989
0.0553564.4 [(CH3)2NCH2]+ (g) CH3NH2 (g) → [CH2NH2]+ (g) (CH3)3N (g) ΔrH°(0 K) = 0.769 ± 0.045 eVRuscic CBS-n
0.0543535.5 [CH3NHCH2]+ (g) CH3NH2 (g) → [CH2NH2]+ (g) (CH3)2NH (g) ΔrH°(0 K) = 0.469 ± 0.040 eVRuscic CBS-n
0.0543535.3 [CH3NHCH2]+ (g) CH3NH2 (g) → [CH2NH2]+ (g) (CH3)2NH (g) ΔrH°(0 K) = 0.468 ± 0.040 eVRuscic G4
0.0543535.2 [CH3NHCH2]+ (g) CH3NH2 (g) → [CH2NH2]+ (g) (CH3)2NH (g) ΔrH°(0 K) = 0.469 ± 0.040 eVRuscic G3X
0.0433535.4 [CH3NHCH2]+ (g) CH3NH2 (g) → [CH2NH2]+ (g) (CH3)2NH (g) ΔrH°(0 K) = 0.462 ± 0.045 eVRuscic CBS-n
0.0312116.9 CH2NH2 (g) → [CH2NH2]+ (g) ΔrH°(0 K) = 6.255 ± 0.040 eVRuscic W1RO
0.0122118.9 [CH2NH2]+ (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 306.77 ± 1.39 kcal/molOliveira 2001
0.0112118.8 [CH2NH2]+ (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 307.21 ± 1.50 kcal/molOliveira 2001, Ruscic W1RO
0.0092118.4 [CH2NH2]+ (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 306.33 ± 1.60 kcal/molRuscic G4
0.0092118.7 [CH2NH2]+ (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 306.77 ± 1.60 kcal/molRuscic CBS-n


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
6   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.