Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Hydrazoic acidHNNN (g)N=[N+]=[N-]297.90291.61± 0.49kJ/mol43.02816 ±
0.00022
7782-79-8*0

Representative Geometry of HNNN (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of HNNN (g)

The 20 contributors listed below account only for 80.8% of the provenance of ΔfH° of HNNN (g).
A total of 43 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
18.21711.1 [NNN]- (aq) [I3]- (aq) → 3 N2 (g) + 3 I- (aq) ΔrH°(298.15 K) = -158.78 ± 0.2 kcal/molGray 1956
14.81690.11 HNNN (g) → H (g) + 3 N (g) ΔrH°(0 K) = 318.06 ± 0.30 kcal/molKarton 2011
12.41083.1 I2 (cr,l) I- (aq) → [I3]- (aq) ΔrH°(298.15 K) = 1.338 ± 0.256 kcal/molWu 1963
5.91082.1 Br2 (cr,l) + 3 I- (aq) → [I3]- (aq) + 2 Br- (aq) ΔrH°(298.15 K) = -29.355 ± 0.364 kcal/molWu 1963
4.51708.1 HNNN (g) → HNNN (aq, undissoc) ΔrH°(298.15 K) = -8.1 ± 0.1 kcal/molD'Orazio 1963, as quoted by NBS Tables
4.51708.2 HNNN (g) → HNNN (aq, undissoc) ΔrG°(298.15 K) = -1.5 ± 0.1 kcal/molD'Orazio 1963, as quoted by NBS Tables
4.21690.10 HNNN (g) → H (g) + 3 N (g) ΔrH°(0 K) = 317.83 ± 0.56 kcal/molKarton 2011
4.11697.1 HNNN (g) → 1/2 H2 (g) + 3/2 N2 (g) ΔrH°(285.6 K) = -70.3 ± 0.5 (×1.139) kcal/molGunther 1935, apud Gurvich TPIS, as quoted by NBS Tables
3.31698.1 HNNN (g) → H (g) NNN (g) ΔrH°(0 K) = 30970 ± 50 cm-1Cook 1999
1.41709.2 HNNN (aq, undissoc) → HNNN (aq) ΔrH°(298.15 K) = 3.60 ± 0.05 kcal/molGray 1956
0.91690.12 HNNN (g) → H (g) + 3 N (g) ΔrH°(0 K) = 316.66 ± 1 (×1.189) kcal/molGutowski 2006
0.81698.2 HNNN (g) → H (g) NNN (g) ΔrH°(0 K) = 30920 ± 100 cm-1Yuan 2008
0.81151.11 NNN (g) → N2 (g) N (g) ΔrH°(0 K) = 4.00 ± 1.0 kcal/molDixon 2004
0.81146.9 NNN (g) → 3 N (g) ΔrH°(0 K) = 228.34 ± 1.0 kcal/molDixon 2004
0.71690.9 HNNN (g) → H (g) + 3 N (g) ΔrH°(0 K) = 317.09 ± 1.35 kcal/molKarton 2011
0.71084.1 Cl2 (g) + 3 I- (aq) → 2 Cl- (aq) [I3]- (aq) ΔrH°(298.15 K) = -51.5 ± 1.1 kcal/molWartenberg 1930, Wartenberg 1931, Parker 1965
0.51690.8 HNNN (g) → H (g) + 3 N (g) ΔrH°(0 K) = 317.66 ± 1.50 kcal/molRuscic W1RO
0.51152.4 NNN (g) CO (g) [O2]+ (g) → [CO2]+ (g) N2 (g) NO (g) ΔrH°(0 K) = -113.80 ± 1.2 kcal/molRuscic W1RO
0.51150.9 [NNN]- (g) → 3 N (g) ΔrH°(0 K) = 290.18 ± 1.0 kcal/molDixon 2004
0.51694.8 [HNNN]+ (g) → H (g) + 3 N (g) ΔrH°(0 K) = 69.72 ± 1.50 kcal/molRuscic W1RO

Top 10 species with enthalpies of formation correlated to the ΔfH° of HNNN (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
83.0 Hydrazoic acidHNNN (aq, undissoc)N=[N+]=[N-]257.62± 0.48kJ/mol43.02816 ±
0.00022
7782-79-8*1000
78.5 Hydrazoic acidHNNN (aq)N=[N+]=[N-]272.61± 0.48kJ/mol43.02816 ±
0.00022
7782-79-8*800
78.5 Azide ion[NNN]- (aq)[N]N=[N-]272.61± 0.48kJ/mol42.02077 ±
0.00021
14343-69-2*800
75.8 Hydrazoic acidHNNN (cr,l)N=[N+]=[N-]261.48± 0.65kJ/mol43.02816 ±
0.00022
7782-79-8*500
63.8 Azido radicalNNN (g)[N]N=[N]452.25449.66± 0.60kJ/mol42.02022 ±
0.00021
12596-60-0*0
56.3 Hydrazoic acid cation[HNNN]+ (g)N=[N+]=[N]1333.651327.98± 0.83kJ/mol43.02761 ±
0.00022
58852-14-5*0
36.0 Trinitrogen cation[NNN]+ (g)[N]N=[N+]1519.411516.88± 0.89kJ/mol42.01967 ±
0.00021
12185-03-4*0
34.5 Azide ion[NNN]- (g)[N]N=[N-]193.51189.93± 0.91kJ/mol42.02077 ±
0.00021
14343-69-2*0
21.1 Hydrazoic acid anion[HNNN]- (g, cis)N=[N]=[N-]316.2310.0± 2.3kJ/mol43.02871 ±
0.00022
203264-98-6*2
-46.8 Triiodide ion[I3]- (aq)I[I-]I-51.37± 0.80kJ/mol380.713959 ±
0.000090
14900-04-0*800

Most Influential reactions involving HNNN (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0001707.1 HNNN (cr,l) → HNNN (g) ΔrH°(298.15 K) = 7.2 ± 0.1 kcal/molGunther 1935, as quoted by NBS Tables
0.6141698.1 HNNN (g) → H (g) NNN (g) ΔrH°(0 K) = 30970 ± 50 cm-1Cook 1999
0.4991691.2 HNNN (g) → [HNNN]+ (g) ΔrH°(0 K) = 10.740 ± 0.010 eVEland 1970, note unc2
0.4531708.1 HNNN (g) → HNNN (aq, undissoc) ΔrH°(298.15 K) = -8.1 ± 0.1 kcal/molD'Orazio 1963, as quoted by NBS Tables
0.4531708.2 HNNN (g) → HNNN (aq, undissoc) ΔrG°(298.15 K) = -1.5 ± 0.1 kcal/molD'Orazio 1963, as quoted by NBS Tables
0.2401706.5 HN(NN) (g) → HNNN (g) ΔrH°(0 K) = -39.59 ± 1.2 kcal/molRuscic W1RO
0.2171693.5 [HNNN]- (g, cis) → HNNN (g) ΔrH°(0 K) = -0.183 ± 0.050 eVRuscic W1RO
0.2171692.5 [HNNN]- (g, trans) → HNNN (g) ΔrH°(0 K) = -0.111 ± 0.050 eVRuscic W1RO
0.2041706.4 HN(NN) (g) → HNNN (g) ΔrH°(0 K) = -40.81 ± 1.3 kcal/molRuscic CBS-n
0.2041706.2 HN(NN) (g) → HNNN (g) ΔrH°(0 K) = -39.40 ± 1.3 kcal/molRuscic G4
0.1761706.1 HN(NN) (g) → HNNN (g) ΔrH°(0 K) = -39.90 ± 1.4 kcal/molRuscic G3X
0.1531698.2 HNNN (g) → H (g) NNN (g) ΔrH°(0 K) = 30920 ± 100 cm-1Yuan 2008
0.1511690.11 HNNN (g) → H (g) + 3 N (g) ΔrH°(0 K) = 318.06 ± 0.30 kcal/molKarton 2011
0.1461693.2 [HNNN]- (g, cis) → HNNN (g) ΔrH°(0 K) = -0.180 ± 0.061 eVRuscic G4
0.1461692.2 [HNNN]- (g, trans) → HNNN (g) ΔrH°(0 K) = -0.111 ± 0.061 eVRuscic G4
0.1351706.3 HN(NN) (g) → HNNN (g) ΔrH°(0 K) = -38.87 ± 1.6 kcal/molRuscic CBS-n
0.1241691.5 HNNN (g) → [HNNN]+ (g) ΔrH°(0 K) = 10.74 ± 0.02 eVBastide 1976
0.1241691.1 HNNN (g) → [HNNN]+ (g) ΔrH°(0 K) = 10.72 ± 0.02 eVCvitas 1976, est unc
0.1241691.3 HNNN (g) → [HNNN]+ (g) ΔrH°(0 K) = 10.72 ± 0.02 eVCradock 1972
0.0751693.1 [HNNN]- (g, cis) → HNNN (g) ΔrH°(0 K) = -0.203 ± 0.085 eVRuscic G3X


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
6   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.