Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Hydrogen fluoride | HF (aq) | | | -334.48 | ± 0.16 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*800 |
|
Top contributors to the provenance of ΔfH° of HF (aq)The 13 contributors listed below account for 90.0% of the provenance of ΔfH° of HF (aq).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 19.0 | 3677.1 | CF4 (g) + 2 H2O (cr,l) → CO2 (g) + 4 HF (aq, 20 H2O)  | ΔrH°(298.15 K) = -41.38 ± 0.32 kcal/mol | Cox 1965, as quoted by Cox 1970, Domalski 1967 | 17.9 | 441.1 | 1/2 H2 (g) + 1/2 F2 (g) → HF (aq, 50 H2O)  | ΔrH°(298.15 K) = -76.68 ± 0.09 kcal/mol | King 1968 | 12.8 | 444.3 | HF (g) → HF (aq)  | ΔrH°(298.15 K) = -14.81 ± 0.10 kcal/mol | Vanderzee 1971, Westrum 1949, Davis 1961, Ruterjans 1969 | 12.8 | 443.1 | HF (g) + [OH]- (aq) → F- (aq) + H2O (cr,l)  | ΔrH°(298.15 K) = -28.065 ± 0.10 kcal/mol | Vanderzee 1971 | 7.5 | 4734.1 | CH2F2 (g) + O2 (g) → CO2 (g) + 2 HF (aq, 23 H2O)  | ΔrH°(298.15 K) = -139.83 ± 0.22 kcal/mol | Neugebauer 1958, as quoted by Cox 1970 | 3.2 | 444.1 | HF (g) → HF (aq)  | ΔrH°(298.15 K) = -14.82 ± 0.20 kcal/mol | Khaidukov 1936, Vanderzee 1971, Parker 1965, est unc | 3.2 | 444.2 | HF (g) → HF (aq)  | ΔrH°(298.15 K) = -14.75 ± 0.20 kcal/mol | Hood 1951, Vanderzee 1971, Parker 1965, est unc | 3.2 | 442.1 | HF (g) → HF (aq, 400 H2O)  | ΔrH°(298.15 K) = -11.56 ± 0.20 kcal/mol | Wartenberg 1926, Vanderzee 1971, Parker 1965 | 3.2 | 443.2 | HF (g) + [OH]- (aq) → F- (aq) + H2O (cr,l)  | ΔrH°(298.15 K) = -27.93 ± 0.20 kcal/mol | Vanderzee 1971 | 2.0 | 3971.1 | 2 CF3H (g) + O2 (g) + 2 H2O (cr,l) → 2 CO2 (g) + 6 HF (aq, 22 H2O)  | ΔrH°(298.15 K) = -180.66 ± 1.30 (×1.091) kcal/mol | Neugebauer 1958, as quoted by Cox 1970 | 1.9 | 4228.1 | C2F4 (s) + O2 (g) + 2 H2O (cr,l) → 2 CO2 (g) + 4 HF (aq, 10 H2O)  | ΔrH°(298.15 K) = -160.34 ± 0.9 kcal/mol | Scott 1955, Good 1956 | 1.9 | 3676.1 | CF4 (g) + 2 H2O (cr,l) → CO2 (g) + 4 HF (aq, 10 H2O)  | ΔrH°(298.15 K) = -41.55 ± 1.00 kcal/mol | Scott 1955, Good 1956 | 1.1 | 769.1 | FCl(F)(F)(F)F (g) + 3 H2 (g) → HCl (aq, 100 H2O) + 5 HF (aq, 30 H2O)  | ΔrH°(298.15 K) = -365.93 ± 1.58 kcal/mol | Armstrong 1969, Oberholtzer 1971, King 1970 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of HF (aq) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 100.0 | Fluoride | F- (aq) | | | -334.48 | ± 0.16 | kJ/mol | 18.99895178 ± 0.00000050 | 16984-48-8*800 | 99.9 | Hydrogen fluoride | HF (aq, 40 H2O) | | | -321.12 | ± 0.16 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*821 | 99.9 | Hydrogen fluoride | HF (aq, 50 H2O) | | | -321.14 | ± 0.16 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*822 | 99.9 | Hydrogen fluoride | HF (aq, 45 H2O) | | | -321.13 | ± 0.16 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*906 | 99.8 | Hydrogen fluoride | HF (aq, 55 H2O) | | | -321.16 | ± 0.16 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*905 | 99.8 | Hydrogen fluoride | HF (aq, 30 H2O) | | | -321.08 | ± 0.16 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*820 | 99.8 | Hydrogen fluoride | HF (aq, 55.51 H2O) | | | -321.16 | ± 0.16 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*891 | 99.8 | Hydrogen fluoride | HF (aq, 35 H2O) | | | -321.10 | ± 0.16 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*904 | 99.8 | Hydrogen fluoride | HF (aq, 37 H2O) | | | -321.11 | ± 0.16 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*890 | 99.8 | Hydrogen fluoride | HF (aq, 60 H2O) | | | -321.16 | ± 0.16 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*823 |
|
Most Influential reactions involving HF (aq)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 1.000 | 440.1 | HF (aq) → H+ (aq) + F- (aq)  | ΔrH°(298.15 K) = 0.000 ± 0.000 kcal/mol | triv | 0.936 | 453.2 | HF (aq, 400 H2O) → HF (aq)  | ΔrH°(298.15 K) = -3.1158 ± 0.004 kcal/mol | Johnson 1973 | 0.853 | 447.2 | HF (aq, 10 H2O) → HF (aq)  | ΔrH°(298.15 K) = -3.2538 ± 0.004 kcal/mol | Johnson 1973 | 0.430 | 448.2 | HF (aq, 20 H2O) → HF (aq)  | ΔrH°(298.15 K) = -3.2185 ± 0.004 kcal/mol | Johnson 1973 | 0.221 | 452.2 | HF (aq, 60 H2O) → HF (aq)  | ΔrH°(298.15 K) = -3.1866 ± 0.004 kcal/mol | Johnson 1973 | 0.201 | 449.2 | HF (aq, 30 H2O) → HF (aq)  | ΔrH°(298.15 K) = -3.2050 ± 0.004 kcal/mol | Johnson 1973 | 0.200 | 454.1 | HF (aq, 18.5 H2O) → HF (aq)  | ΔrH°(298.15 K) = -3.216 ± 0.006 kcal/mol | Parker 1965 | 0.198 | 455.1 | HF (aq, 22.2 H2O) → HF (aq)  | ΔrH°(298.15 K) = -3.211 ± 0.006 kcal/mol | Parker 1965 | 0.191 | 448.1 | HF (aq, 20 H2O) → HF (aq)  | ΔrH°(298.15 K) = -3.214 ± 0.006 kcal/mol | Parker 1965 | 0.184 | 451.2 | HF (aq, 50 H2O) → HF (aq)  | ΔrH°(298.15 K) = -3.1908 ± 0.004 kcal/mol | Johnson 1973 | 0.181 | 450.2 | HF (aq, 40 H2O) → HF (aq)  | ΔrH°(298.15 K) = -3.1967 ± 0.004 kcal/mol | Johnson 1973 | 0.146 | 447.1 | HF (aq, 10 H2O) → HF (aq)  | ΔrH°(298.15 K) = -3.265 ± 0.006 (×1.61) kcal/mol | Parker 1965, NBS TN270 | 0.141 | 444.3 | HF (g) → HF (aq)  | ΔrH°(298.15 K) = -14.81 ± 0.10 kcal/mol | Vanderzee 1971, Westrum 1949, Davis 1961, Ruterjans 1969 | 0.089 | 449.1 | HF (aq, 30 H2O) → HF (aq)  | ΔrH°(298.15 K) = -3.200 ± 0.006 kcal/mol | Parker 1965 | 0.086 | 456.1 | HF (aq, 37 H2O) → HF (aq)  | ΔrH°(298.15 K) = -3.194 ± 0.006 kcal/mol | Parker 1965 | 0.082 | 451.1 | HF (aq, 50 H2O) → HF (aq)  | ΔrH°(298.15 K) = -3.184 ± 0.006 kcal/mol | Parker 1965 | 0.080 | 450.1 | HF (aq, 40 H2O) → HF (aq)  | ΔrH°(298.15 K) = -3.192 ± 0.006 kcal/mol | Parker 1965 | 0.080 | 457.1 | HF (aq, 55.51 H2O) → HF (aq)  | ΔrH°(298.15 K) = -3.179 ± 0.006 (×1.044) kcal/mol | Parker 1965 | 0.066 | 452.1 | HF (aq, 60 H2O) → HF (aq)  | ΔrH°(298.15 K) = -3.176 ± 0.006 (×1.215) kcal/mol | Parker 1965 | 0.045 | 453.1 | HF (aq, 400 H2O) → HF (aq)  | ΔrH°(298.15 K) = -3.097 ± 0.006 (×3.018) kcal/mol | Parker 1965 |
|
|
References (for your convenience, also available in RIS and BibTex format)
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov |
4
|
|
B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015)
[DOI: 10.1021/acs.jpca.5b01346]
|
5
|
|
T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015)
[DOI: 10.1021/acs.jpca.5b08406]
|
6
|
|
L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017)
[DOI: 10.1021/acs.jctc.6b00970]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|