Selected ATcT [1, 2] enthalpy of formation based on version 1.122d of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122b [4][5] to include the enthalpies of formation of methylamine, dimethylamine and trimethylamine that were used as reference values to derive the bond dissociation energies of 20 diatomic molecules containing 3d transition metals.[6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Nitrosyl hydrideHNO (g)N=O109.93106.96± 0.11kJ/mol31.01408 ±
0.00032
14332-28-6*0

Representative Geometry of HNO (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of HNO (g)

The 20 contributors listed below account only for 89.9% of the provenance of ΔfH° of HNO (g).
A total of 21 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
38.91566.4 HNO (g) → H (g) NO (g) ΔrH°(0 K) = 16450 ± 10 cm-1Dixon 1981, Dixon 1984, Dixon 1996
9.71566.6 HNO (g) → H (g) NO (g) ΔrH°(0 K) = 16450 ± 20 cm-1Petersen 1985, Dateo 1994
6.01566.5 HNO (g) → H (g) NO (g) ΔrH°(0 K) = 16470 ± 20 (×1.269) cm-1Dixon 1984, Dixon 1996, Dateo 1994
5.51189.2 NO (g) → N (g) O (g) ΔrH°(0 K) = 52400 ± 10 cm-1Dingle 1975
5.51189.1 NO (g) → N (g) O (g) ΔrH°(0 K) = 52400 ± 10 cm-1Callear 1970
4.41189.4 NO (g) → N (g) O (g) ΔrH°(0 K) = 52408 ± 10 (×1.114) cm-1Kley 1973, Miescher 1974, est unc
3.31560.4 HNO (g) → H (g) N (g) O (g) ΔrH°(0 K) = 823.10 ± 0.56 kJ/molHarding 2008
2.11560.2 HNO (g) → H (g) N (g) O (g) ΔrH°(0 K) = 823.32 ± 0.70 kJ/molHarding 2008
1.81560.1 HNO (g) → H (g) N (g) O (g) ΔrH°(0 K) = 822.97 ± 0.75 kJ/molTajti 2004, est unc
1.71560.3 HNO (g) → H (g) N (g) O (g) ΔrH°(0 K) = 822.76 ± 0.74 (×1.044) kJ/molHarding 2008
1.51560.5 HNO (g) → H (g) N (g) O (g) ΔrH°(0 K) = 823.25 ± 0.84 kJ/molHarding 2008
1.51560.7 HNO (g) → H (g) N (g) O (g) ΔrH°(0 K) = 823.04 ± 0.84 kJ/molHarding 2008
1.11142.3 N2 (g) → N+ (g) N (g) ΔrH°(0 K) = 24.2880 ± 0.0009 eVTang 2005
1.01189.3 NO (g) → N (g) O (g) ΔrH°(0 K) = 52420 ± 12 (×1.957) cm-1Miescher 1974, Huber 1979
0.91559.9 HNO (g) → H (g) N (g) O (g) ΔrH°(0 K) = 196.74 ± 0.25 kcal/molKarton 2007
0.91142.2 N2 (g) → N+ (g) N (g) ΔrH°(0 K) = 24.2883 ± 0.0010 eVTang 2005
0.91142.1 N2 (g) → N+ (g) N (g) ΔrH°(0 K) = 24.2888 ± 0.0010 eVTang 2005
0.81560.6 HNO (g) → H (g) N (g) O (g) ΔrH°(0 K) = 822.69 ± 1.14 kJ/molHarding 2008
0.81573.1 1/2 H2 (g) + 1/2 N2 (g) + 1/2 O2 (g) → HNO (g) ΔrH°(0 K) = 110.9 ± 1.2 kJ/molSzakacs 2011
0.61559.8 HNO (g) → H (g) N (g) O (g) ΔrH°(0 K) = 196.78 ± 0.30 kcal/molKarton 2008, Karton 2006

Top 10 species with enthalpies of formation correlated to the ΔfH° of HNO (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
51.3 Nitric oxideNO (g)[N]=O90.61691.120± 0.065kJ/mol30.00614 ±
0.00031
10102-43-9*0
51.3 Nitrogen dioxideONO (g)O=[N]=O36.85534.048± 0.065kJ/mol46.00554 ±
0.00060
10102-44-0*0
51.2 Nitrosyl ion[NO]+ (g)N#[O+]984.484984.479± 0.065kJ/mol30.00559 ±
0.00031
14452-93-8*0
49.9 Dinitrogen tetraoxideO2NNO2 (g)O=N(=O)N(=O)=O20.1410.85± 0.14kJ/mol92.0111 ±
0.0012
10544-72-6*0
49.5 Nitrosyl chlorideClNO (g)ClN=O54.45052.548± 0.067kJ/mol65.45884 ±
0.00095
2696-92-6*0
48.4 Dinitrogen dioxideONNO (g)O=NN=O172.88171.12± 0.14kJ/mol60.01228 ±
0.00062
16824-89-8*0
48.4 Dinitrogen dioxideONNO (g, cis)O=NN=O172.88171.12± 0.14kJ/mol60.01228 ±
0.00062
16824-89-8*2
46.1 Nitrogen sesquioxideONNO2 (g)O=N-[N](=O)[O]90.7186.15± 0.15kJ/mol76.01168 ±
0.00091
10544-73-7*0
42.2 Nitrous acidHONO (g)N(=O)O-73.023-78.680± 0.079kJ/mol47.01348 ±
0.00061
7782-77-6*0
42.2 Nitrous acidHONO (g, trans)N(=O)O-73.023-79.167± 0.079kJ/mol47.01348 ±
0.00061
7782-77-6*1

Most Influential reactions involving HNO (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.6021566.4 HNO (g) → H (g) NO (g) ΔrH°(0 K) = 16450 ± 10 cm-1Dixon 1981, Dixon 1984, Dixon 1996
0.5061579.9 HNO (g) → NOH (g) ΔrH°(0 K) = 25.82 ± 0.30 kcal/molDixon 2006
0.4861562.2 HNO (g) → [HNO]+ (g) ΔrH°(0 K) = 10.18 ± 0.01 eVBaker 1990
0.4641563.1 [HNO]- (g) → HNO (g) ΔrH°(0 K) = 0.338 ± 0.015 eVEllis 1983
0.3371562.1 HNO (g) → [HNO]+ (g) ΔrH°(0 K) = 10.184 ± 0.012 eVKuo 1997
0.2161563.9 [HNO]- (g) → HNO (g) ΔrH°(0 K) = 0.317 ± 0.022 eVDixon 2006
0.1501566.6 HNO (g) → H (g) NO (g) ΔrH°(0 K) = 16450 ± 20 cm-1Petersen 1985, Dateo 1994
0.0931566.5 HNO (g) → H (g) NO (g) ΔrH°(0 K) = 16470 ± 20 (×1.269) cm-1Dixon 1984, Dixon 1996, Dateo 1994
0.0691552.1 HNOH (g, trans) → HNO (g) H (g) ΔrH°(0 K) = 53.9 ± 1.0 kcal/molKlippenstein 2009, est unc
0.0461532.1 H2NO (g) → HNO (g) H (g) ΔrH°(0 K) = 60.9 ± 1.0 kcal/molKlippenstein 2009, est unc
0.0411563.10 [HNO]- (g) → HNO (g) ΔrH°(0 K) = 0.333 ± 0.050 eVRuscic W1RO
0.0351560.4 HNO (g) → H (g) N (g) O (g) ΔrH°(0 K) = 823.10 ± 0.56 kJ/molHarding 2008
0.0311579.8 HNO (g) → NOH (g) ΔrH°(0 K) = 25.58 ± 1.2 kcal/molRuscic W1RO
0.0301562.10 HNO (g) → [HNO]+ (g) ΔrH°(0 K) = 10.192 ± 0.040 eVRuscic W1RO
0.0281563.5 [HNO]- (g) → HNO (g) ΔrH°(0 K) = 0.312 ± 0.061 eVRuscic G4
0.0271579.7 HNO (g) → NOH (g) ΔrH°(0 K) = 25.14 ± 1.3 kcal/molRuscic CBS-n
0.0271579.4 HNO (g) → NOH (g) ΔrH°(0 K) = 26.06 ± 1.3 kcal/molRuscic G4
0.0231579.3 HNO (g) → NOH (g) ΔrH°(0 K) = 25.34 ± 1.4 kcal/molRuscic G3X
0.0221560.2 HNO (g) → H (g) N (g) O (g) ΔrH°(0 K) = 823.32 ± 0.70 kJ/molHarding 2008
0.0191560.1 HNO (g) → H (g) N (g) O (g) ΔrH°(0 K) = 822.97 ± 0.75 kJ/molTajti 2004, est unc


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122d of the Thermochemical Network, Argonne National Laboratory (2018); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
6   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.