Selected ATcT [1, 2] enthalpy of formation based on version 1.122b of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122 [4][5] to include the best possible isomerization of HCN and HNC [6].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Nitric acid | HNO3 (aq, 3 H2O) | | | -197.75 | ± 0.18 | kJ/mol | 63.01288 ± 0.00091 | 7697-37-2*805 |
|
Top contributors to the provenance of ΔfH° of HNO3 (aq, 3 H2O)The 20 contributors listed below account only for 89.9% of the provenance of ΔfH° of HNO3 (aq, 3 H2O). A total of 21 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 40.5 | 1204.3 | (NH4)NO3 (cr,l) → N2 (g) + 1/2 O2 (g) + 2 H2O (cr,l)  | ΔrH°(293.65 K) = -49.44 ± 0.06 kcal/mol | Becker 1934 | 17.8 | 1427.1 | 2 ONO (g) + 1/2 O2 (g) + H2O (g) → 2 HNO3 (g)  | ΔrG°(371 K) = -6.04 ± 0.63 kJ/mol | Jones 1943, 3rd Law | 7.0 | 1426.1 | 3 ONO (g) + H2O (g) → NO (g) + 2 HNO3 (g)  | ΔrH°(293.1 K) = -8.95 ± 0.24 kcal/mol | Forsythe 1942, Chambers 1937, Wilson 1940, as quoted by Gurvich TPIS | 5.1 | 1451.1 | HNO3 (cr,l) → HNO3 (g)  | ΔrH°(293.15 K) = 9.426 ± 0.030 kcal/mol | Wilson 1940, est unc | 4.4 | 1426.4 | 3 ONO (g) + H2O (g) → NO (g) + 2 HNO3 (g)  | ΔrG°(298.15 K) = 10.33 ± 1.08 (×1.164) kJ/mol | Chambers 1937, 3rd Law | 2.4 | 1456.1 | 2 NO (g) + 3/2 O2 (g) + H2O (cr,l) → 2 HNO3 (aq)  | ΔrH°(298.15 K) = -74.05 ± 0.5 kcal/mol | Forsythe 1942, est unc | 1.8 | 1451.4 | HNO3 (cr,l) → HNO3 (g)  | ΔrH°(298.15 K) = 9.331 ± 0.05 kcal/mol | NBS Tables 1989, est unc | 1.6 | 1426.3 | 3 ONO (g) + H2O (g) → NO (g) + 2 HNO3 (g)  | ΔrH°(298.15 K) = -9.124 ± 0.5 kcal/mol | Forsythe 1942, Chambers 1937, est unc | 1.6 | 1426.2 | 3 ONO (g) + H2O (g) → NO (g) + 2 HNO3 (g)  | ΔrH°(298.15 K) = -9.184 ± 0.5 kcal/mol | Forsythe 1942, est unc | 1.2 | 117.2 | 1/2 O2 (g) + H2 (g) → H2O (cr,l)  | ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol | Rossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930 | 0.8 | 988.2 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 52400 ± 10 cm-1 | Dingle 1975 | 0.8 | 988.1 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 52400 ± 10 cm-1 | Callear 1970 | 0.6 | 988.4 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 52408 ± 10 (×1.139) cm-1 | Kley 1973, Miescher 1974, est unc | 0.6 | 1199.1 | NH3 (g) → NH3 (aq, undissoc)  | ΔrH°(298.15 K) = -8.448 ± 0.015 kcal/mol | Vanderzee 1972 | 0.5 | 1448.2 | HNO3 (aq, 3 H2O) → HNO3 (aq)  | ΔrH°(298.15 K) = -2.123 ± 0.005 kcal/mol | Forsythe 1942 | 0.4 | 1211.2 | (NH4)NO3 (cr,l) → [NH4]+ (aq) + [NO3]- (aq)  | ΔrH°(298.15 K) = 25.544 ± 0.030 kJ/mol | Vanderzee 1980, Vanderzee 1980a, as quoted by CODATA Key Vals | 0.4 | 1433.1 | [NO3]- (g) → NO3 (g)  | ΔrH°(0 K) = 3.937 ± 0.014 eV | Weaver 1991 | 0.4 | 1451.3 | HNO3 (cr,l) → HNO3 (g)  | ΔrH°(293.15 K) = 9.350 ± 0.100 kcal/mol | Forsythe 1942, Wilson 1940 | 0.4 | 1451.2 | HNO3 (cr,l) → HNO3 (g)  | ΔrH°(293.15 K) = 9.450 ± 0.100 kcal/mol | Wilson 1940, Forsythe 1942 | 0.4 | 1426.6 | 3 ONO (g) + H2O (g) → NO (g) + 2 HNO3 (g)  | ΔrG°(298.15 K) = 7.6 ± 1.2 (×3.364) kJ/mol | Abel 1930, 3rd Law, note unc5 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of HNO3 (aq, 3 H2O) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.4 | Nitric acid | HNO3 (aq) | | | -206.63 | ± 0.18 | kJ/mol | 63.01288 ± 0.00091 | 7697-37-2*800 | 99.4 | Nitrate | [NO3]- (aq) | | | -206.63 | ± 0.18 | kJ/mol | 62.00549 ± 0.00090 | 14797-55-8*800 | 99.0 | Nitric acid | HNO3 (aq, 1000 H2O) | | | -206.31 | ± 0.18 | kJ/mol | 63.01288 ± 0.00091 | 7697-37-2*839 | 98.7 | Nitric acid | HNO3 (cr,l) | | -179.01 | -173.28 | ± 0.18 | kJ/mol | 63.01288 ± 0.00091 | 7697-37-2*500 | 98.5 | Nitric acid | HNO3 (aq, 1 H2O) | | | -186.84 | ± 0.19 | kJ/mol | 63.01288 ± 0.00091 | 7697-37-2*801 | 97.6 | Nitric acid monohydrate | HNO3(H2O) (cr,l) | | -479.17 | -472.67 | ± 0.19 | kJ/mol | 81.0282 ± 0.0012 | 13444-82-1*500 | 93.5 | Ammonium nitrate | (NH4)NO3 (cr,l) | | -350.28 | -365.25 | ± 0.19 | kJ/mol | 80.04344 ± 0.00095 | 6484-52-2*500 | 92.7 | Nitric acid trihydrate | HNO3(H2O)3 (cr,l) | | -1062.09 | -1055.24 | ± 0.21 | kJ/mol | 117.0587 ± 0.0019 | 13444-83-2*500 | 84.3 | Nitric acid | HNO3 (g) | | -124.48 | -134.19 | ± 0.18 | kJ/mol | 63.01288 ± 0.00091 | 7697-37-2*0 | -21.8 | Methyl nitrite | CH3ONO (g, cis-trans equilib) | | -55.46 | -66.13 | ± 0.46 | kJ/mol | 61.0401 ± 0.0010 | 624-91-9*0 |
|
Most Influential reactions involving HNO3 (aq, 3 H2O)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122b of the Thermochemical Network (2016); available at ATcT.anl.gov |
4
|
|
B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015)
[DOI: 10.1021/acs.jpca.5b01346]
|
5
|
|
S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017)
[DOI: 10.1021/acs.jpca.7b05945]
|
6
|
|
T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015)
[DOI: 10.1021/acs.jpca.5b08406]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|