Selected ATcT [1, 2] enthalpy of formation based on version 1.122b of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122 [4][5] to include the best possible isomerization of HCN and HNC [6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Ammonium nitrate(NH4)NO3 (cr,l)[NH4+].O=[N+]([O-])[O-]-350.28-365.25± 0.19kJ/mol80.04344 ±
0.00095
6484-52-2*500

Top contributors to the provenance of ΔfH° of (NH4)NO3 (cr,l)

The 20 contributors listed below account for 90.3% of the provenance of ΔfH° of (NH4)NO3 (cr,l).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
45.91204.3 (NH4)NO3 (cr,l) → N2 (g) + 1/2 O2 (g) + 2 H2O (cr,l) ΔrH°(293.65 K) = -49.44 ± 0.06 kcal/molBecker 1934
15.81427.1 ONO (g) + 1/2 O2 (g) H2O (g) → 2 HNO3 (g) ΔrG°(371 K) = -6.04 ± 0.63 kJ/molJones 1943, 3rd Law
6.21426.1 ONO (g) H2O (g) → NO (g) + 2 HNO3 (g) ΔrH°(293.1 K) = -8.95 ± 0.24 kcal/molForsythe 1942, Chambers 1937, Wilson 1940, as quoted by Gurvich TPIS
4.41451.1 HNO3 (cr,l) → HNO3 (g) ΔrH°(293.15 K) = 9.426 ± 0.030 kcal/molWilson 1940, est unc
3.91426.4 ONO (g) H2O (g) → NO (g) + 2 HNO3 (g) ΔrG°(298.15 K) = 10.33 ± 1.08 (×1.164) kJ/molChambers 1937, 3rd Law
2.11456.1 NO (g) + 3/2 O2 (g) H2O (cr,l) → 2 HNO3 (aq) ΔrH°(298.15 K) = -74.05 ± 0.5 kcal/molForsythe 1942, est unc
1.61451.4 HNO3 (cr,l) → HNO3 (g) ΔrH°(298.15 K) = 9.331 ± 0.05 kcal/molNBS Tables 1989, est unc
1.5117.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
1.41426.3 ONO (g) H2O (g) → NO (g) + 2 HNO3 (g) ΔrH°(298.15 K) = -9.124 ± 0.5 kcal/molForsythe 1942, Chambers 1937, est unc
1.41426.2 ONO (g) H2O (g) → NO (g) + 2 HNO3 (g) ΔrH°(298.15 K) = -9.184 ± 0.5 kcal/molForsythe 1942, est unc
0.81199.1 NH3 (g) → NH3 (aq, undissoc) ΔrH°(298.15 K) = -8.448 ± 0.015 kcal/molVanderzee 1972
0.7988.1 NO (g) → N (g) O (g) ΔrH°(0 K) = 52400 ± 10 cm-1Callear 1970
0.7988.2 NO (g) → N (g) O (g) ΔrH°(0 K) = 52400 ± 10 cm-1Dingle 1975
0.6988.4 NO (g) → N (g) O (g) ΔrH°(0 K) = 52408 ± 10 (×1.139) cm-1Kley 1973, Miescher 1974, est unc
0.51211.2 (NH4)NO3 (cr,l) → [NH4]+ (aq) [NO3]- (aq) ΔrH°(298.15 K) = 25.544 ± 0.030 kJ/molVanderzee 1980, Vanderzee 1980a, as quoted by CODATA Key Vals
0.41433.1 [NO3]- (g) → NO3 (g) ΔrH°(0 K) = 3.937 ± 0.014 eVWeaver 1991
0.41451.3 HNO3 (cr,l) → HNO3 (g) ΔrH°(293.15 K) = 9.350 ± 0.100 kcal/molForsythe 1942, Wilson 1940
0.41451.2 HNO3 (cr,l) → HNO3 (g) ΔrH°(293.15 K) = 9.450 ± 0.100 kcal/molWilson 1940, Forsythe 1942
0.41149.1 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔrH°(298.15 K) = -10.885 ± 0.010 kcal/molLarson 1923, Vanderzee 1972
0.31426.6 ONO (g) H2O (g) → NO (g) + 2 HNO3 (g) ΔrG°(298.15 K) = 7.6 ± 1.2 (×3.364) kJ/molAbel 1930, 3rd Law, note unc5

Top 10 species with enthalpies of formation correlated to the ΔfH° of (NH4)NO3 (cr,l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
94.1 Nitrate[NO3]- (aq)O=[N+]([O-])[O-]-206.63± 0.18kJ/mol62.00549 ±
0.00090
14797-55-8*800
94.1 Nitric acidHNO3 (aq)O[N+](=O)[O-]-206.63± 0.18kJ/mol63.01288 ±
0.00091
7697-37-2*800
93.7 Nitric acidHNO3 (aq, 1000 H2O)O[N+](=O)[O-]-206.31± 0.18kJ/mol63.01288 ±
0.00091
7697-37-2*839
93.5 Nitric acidHNO3 (aq, 3 H2O)O[N+](=O)[O-]-197.75± 0.18kJ/mol63.01288 ±
0.00091
7697-37-2*805
93.1 Nitric acidHNO3 (aq, 1 H2O)O[N+](=O)[O-]-186.84± 0.19kJ/mol63.01288 ±
0.00091
7697-37-2*801
93.0 Nitric acidHNO3 (cr,l)O[N+](=O)[O-]-179.01-173.28± 0.18kJ/mol63.01288 ±
0.00091
7697-37-2*500
92.7 Nitric acid monohydrateHNO3(H2O) (cr,l)O[N+](=O)[O-].O-479.17-472.67± 0.19kJ/mol81.0282 ±
0.0012
13444-82-1*500
88.1 Nitric acid trihydrateHNO3(H2O)3 (cr,l)O[N+](=O)[O-].O.O.O-1062.09-1055.24± 0.21kJ/mol117.0587 ±
0.0019
13444-83-2*500
79.7 Nitric acidHNO3 (g)O[N+](=O)[O-]-124.48-134.19± 0.18kJ/mol63.01288 ±
0.00091
7697-37-2*0
22.2 Ammonium hydroxideNH4OH (aq, undissoc)[NH4+].[OH-]-366.715± 0.062kJ/mol35.04584 ±
0.00047
1336-21-6*1000

Most Influential reactions involving (NH4)NO3 (cr,l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.8971211.2 (NH4)NO3 (cr,l) → [NH4]+ (aq) [NO3]- (aq) ΔrH°(298.15 K) = 25.544 ± 0.030 kJ/molVanderzee 1980, Vanderzee 1980a, as quoted by CODATA Key Vals
0.5011204.3 (NH4)NO3 (cr,l) → N2 (g) + 1/2 O2 (g) + 2 H2O (cr,l) ΔrH°(293.65 K) = -49.44 ± 0.06 kcal/molBecker 1934
0.0531211.3 (NH4)NO3 (cr,l) → [NH4]+ (aq) [NO3]- (aq) ΔrH°(298.15 K) = 25.418 ± 0.030 (×4.088) kJ/molMedvedev 1978, as quoted by CODATA Key Vals
0.0251430.1 (NH4)NO3 (cr,l) → NH3 (g) HNO3 (g) ΔrG°(493 K) = 38.6 ± 0.7 kJ/molFeick 1954, 3rd Law
0.0201211.1 (NH4)NO3 (cr,l) → [NH4]+ (aq) [NO3]- (aq) ΔrH°(298.15 K) = 25.49 ± 0.20 kJ/molBecker 1934, Parker 1965, as quoted by CODATA Key Vals
0.0121457.1 HNO3 (aq, 1000 H2O) NH3 (g) → (NH4)NO3 (cr,l) ΔrH°(298.15 K) = -27.22 ± 0.02 (×6.169) kcal/molBecker 1934, Parker 1965
0.0081211.6 (NH4)NO3 (cr,l) → [NH4]+ (aq) [NO3]- (aq) ΔrG°(298.15 K) = -6.068 ± 0.080 (×3.914) kJ/molCODATA Key Vals
0.0051211.4 (NH4)NO3 (cr,l) → [NH4]+ (aq) [NO3]- (aq) ΔrH°(298.15 K) = 25.86 ± 0.40 kJ/molKrestov 1972, as quoted by CODATA Key Vals
0.0041211.5 (NH4)NO3 (cr,l) → [NH4]+ (aq) [NO3]- (aq) ΔrH°(298.15 K) = 6.14 ± 0.10 kcal/molParker 1965, as quoted by CODATA Key Vals
0.0021204.6 (NH4)NO3 (cr,l) → N2 (g) + 1/2 O2 (g) + 2 H2O (cr,l) ΔrH°(291.15 K) = -49.76 ± 0.90 kcal/molMedard 1953
0.0001430.3 (NH4)NO3 (cr,l) → NH3 (g) HNO3 (g) ΔrG°(398 K) = 64.0 ± 1.2 (×3.364) kJ/molBrandner 1962, 3rd Law
0.0001430.5 (NH4)NO3 (cr,l) → NH3 (g) HNO3 (g) ΔrG°(478 K) = 42.2 ± 4.3 kJ/molBrandner 1962, 3rd Law
0.0001430.4 (NH4)NO3 (cr,l) → NH3 (g) HNO3 (g) ΔrH°(398 K) = 179.2 ± 5.1 kJ/molBrandner 1962, 2nd Law
0.0001430.2 (NH4)NO3 (cr,l) → NH3 (g) HNO3 (g) ΔrH°(493 K) = 166.9 ± 6.9 kJ/molFeick 1954, 2nd Law
0.0001430.6 (NH4)NO3 (cr,l) → NH3 (g) HNO3 (g) ΔrH°(478 K) = 166.9 ± 10.8 kJ/molBrandner 1962, 2nd Law


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122b of the Thermochemical Network (2016); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017) [DOI: 10.1021/acs.jpca.7b05945]
6   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.