Selected ATcT [1, 2] enthalpy of formation based on version 1.122b of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122 [4][5] to include the best possible isomerization of HCN and HNC [6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Methyl formateHC(O)OCH3 (l)COC=O-386.14± 0.58kJ/mol60.0520 ±
0.0017
107-31-3*500

Top contributors to the provenance of ΔfH° of HC(O)OCH3 (l)

The 1 contributors listed below account for 96.1% of the provenance of ΔfH° of HC(O)OCH3 (l).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
96.13187.1 HC(O)OCH3 (l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -232.46 ± 0.14 kcal/molHall 1971, as quoted by Pedley 1986

Top 10 species with enthalpies of formation correlated to the ΔfH° of HC(O)OCH3 (l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.8 Methyl formateHC(O)OCH3 (g)COC=O-344.75-357.79± 0.58kJ/mol60.0520 ±
0.0017
107-31-3*0
99.8 Methyl formateHC(O)OCH3 (g, syn-staggered)COC=O-344.75-357.80± 0.58kJ/mol60.0520 ±
0.0017
107-31-3*1
38.9 (Formyloxy)methylHC(O)OCH2 (g, syn)O=CO[CH2]-148.7-156.8± 1.5kJ/mol59.0440 ±
0.0017
3122-12-1*1
38.9 (Formyloxy)methylHC(O)OCH2 (g)O=CO[CH2]-148.7-156.8± 1.5kJ/mol59.0440 ±
0.0017
3122-12-1*0
33.2 Methyl formateHC(O)OCH3 (g, anti-eclipsed)COC=O-324.6-337.1± 1.6kJ/mol60.0520 ±
0.0017
107-31-3*2
31.5 MethoxycarbonylC(O)OCH3 (g)CO[C]=O-149.8-157.5± 1.9kJ/mol59.0440 ±
0.0017
16481-04-2*0
31.5 MethoxycarbonylC(O)OCH3 (g, anti-staggered)CO[C]=O-149.8-157.7± 1.9kJ/mol59.0440 ±
0.0017
16481-04-2*1
29.0 (Formyloxy)methylHC(O)OCH2 (g, anti)O=CO[CH2]-133.5-141.7± 1.9kJ/mol59.0440 ±
0.0017
3122-12-1*2
8.7 WaterH2O (cr,l)O-286.300-285.828± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*500
8.7 WaterH2O (l)O-285.828± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*590

Most Influential reactions involving HC(O)OCH3 (l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9843186.4 HC(O)OCH3 (l) → HC(O)OCH3 (g) ΔrH°(298.15 K) = 28.346 ± 0.032 kJ/molThermoData 2004
0.9713187.1 HC(O)OCH3 (l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -232.46 ± 0.14 kcal/molHall 1971, as quoted by Pedley 1986
0.0153186.2 HC(O)OCH3 (l) → HC(O)OCH3 (g) ΔrH°(298.15 K) = 28.60 ± 0.21 (×1.215) kJ/molMajer 1985
0.0003186.1 HC(O)OCH3 (l) → HC(O)OCH3 (g) ΔrH°(298.15 K) = 7.31 ± 0.10 (×5.417) kcal/molHall 1971, as quoted by Pedley 1986


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122b of the Thermochemical Network (2016); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017) [DOI: 10.1021/acs.jpca.7b05945]
6   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.