Selected ATcT [1, 2] enthalpy of formation based on version 1.122b of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122 [4][5] to include the best possible isomerization of HCN and HNC [6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
PropaneCH3CH2CH3 (g)CCC-82.75-105.03± 0.19kJ/mol44.0956 ±
0.0025
74-98-6*0

Representative Geometry of CH3CH2CH3 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH3CH2CH3 (g)

The 20 contributors listed below account only for 49.9% of the provenance of ΔfH° of CH3CH2CH3 (g).
A total of 389 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
8.32266.1 CH3CH2CH3 (g) + 5 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -2219.15 ± 0.46 kJ/molPittam 1972
7.9117.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
3.92591.5 CH3CH2CH2CH2CH3 (g) + 2 C2H6 (g) → 3 CH3CH2CH3 (g) ΔrH°(0 K) = 0.52 ± 0.35 kcal/molKarton 2009b
3.22300.1 CH3CHCH2 (g) H2 (g) → CH3CH2CH3 (g) ΔrH°(355.15 K) = -30.122 ± 0.060 kcal/molKistiakowsky 1935a
2.51722.1 C2H6 (g) + 7/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -1560.68 ± 0.25 kJ/molPittam 1972
2.52299.1 CH3CHCH2 (g) + 9/2 O2 (g) → 3 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -2057.72 ± 0.62 kJ/molRossini 1937
2.22510.1 CH3CH2CH2CH3 (g) C2H6 (g) → 2 CH3CH2CH3 (g) ΔrH°(298.15 K) = 0.11 ± 1.14 kJ/molPittam 1972
2.12647.5 CH3(CH2)6CH3 (g) + 5 C2H6 (g) → 6 CH3CH2CH3 (g) ΔrH°(0 K) = 1.50 ± 0.85 kcal/molKarton 2009b, Ruscic W1RO
1.92647.4 CH3(CH2)6CH3 (g) + 5 C2H6 (g) → 6 CH3CH2CH3 (g) ΔrH°(0 K) = 1.37 ± 0.90 kcal/molRuscic CBS-n
1.92647.1 CH3(CH2)6CH3 (g) + 5 C2H6 (g) → 6 CH3CH2CH3 (g) ΔrH°(0 K) = 1.46 ± 0.90 kcal/molRuscic G3X
1.92647.2 CH3(CH2)6CH3 (g) + 5 C2H6 (g) → 6 CH3CH2CH3 (g) ΔrH°(0 K) = 1.75 ± 0.90 kcal/molRuscic G4
1.52647.3 CH3(CH2)6CH3 (g) + 5 C2H6 (g) → 6 CH3CH2CH3 (g) ΔrH°(0 K) = 1.40 ± 1.00 kcal/molRuscic CBS-n
1.51642.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
1.31519.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
1.32509.8 CH3CH2CH2CH3 (g) C2H6 (g) → 2 CH3CH2CH3 (g) ΔrH°(0 K) = 0.32 ± 0.35 kcal/molKarton 2009b
1.11780.1 C2H4 (g) H2 (g) → C2H6 (g) ΔrH°(355.15 K) = -32.831 ± 0.05 kcal/molKistiakowsky 1935
1.12266.2 CH3CH2CH3 (g) + 5 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -2219.90 ± 0.51 (×2.378) kJ/molRossini 1934
1.12262.12 CH3CH2CH3 (g) → 3 C (g) + 8 H (g) ΔrH°(0 K) = 942.95 ± 0.30 kcal/molKarton 2009b, Karton 2011
0.91565.2 CO (g) → C+ (g) O (g) ΔrH°(0 K) = 22.3713 ± 0.0015 eVNg 2007
0.81779.1 C2H4 (g) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -1411.18 ± 0.30 kJ/molRossini 1937

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3CH2CH3 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
72.6 iso-Propylium[CH3CHCH3]+ (g)C[CH+]C822.88805.62± 0.26kJ/mol43.0871 ±
0.0024
19252-53-0*0
66.1 PropyleneCH3CHCH2 (g)CC=C35.0019.99± 0.22kJ/mol42.0797 ±
0.0024
115-07-1*0
59.8 EthaneC2H6 (g)CC-68.29-83.91± 0.14kJ/mol30.0690 ±
0.0017
74-84-0*0
46.9 n-ButaneCH3CH2CH2CH3 (g)CCCC-98.63-125.94± 0.27kJ/mol58.1222 ±
0.0033
106-97-8*0
45.8 EthyleneC2H4 (g)C=C60.9652.45± 0.13kJ/mol28.0532 ±
0.0016
74-85-1*0
45.8 Ethylene cation[C2H4]+ (g)C=[CH2+]1075.281068.07± 0.13kJ/mol28.0526 ±
0.0016
34470-02-5*0
42.7 WaterH2O (cr,l)O-286.300-285.828± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*500
42.7 WaterH2O (l)O-285.828± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*590
42.7 Oxonium[H3O]+ (aq)[OH3+]-285.828± 0.027kJ/mol19.02267 ±
0.00037
13968-08-6*800
42.7 WaterH2O (l, eq.press.)O-285.830± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*589

Most Influential reactions involving CH3CH2CH3 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.8222293.1 CH3CH2CH3 (g) → [CH3CHCH3]+ (g) H (g) ΔrH°(0 K) = 11.624 ± 0.002 eVStevens 2010
0.4372300.1 CH3CHCH2 (g) H2 (g) → CH3CH2CH3 (g) ΔrH°(355.15 K) = -30.122 ± 0.060 kcal/molKistiakowsky 1935a
0.1952520.1 CH3CH2CH2CH3 (g) CH3CH2CH2 (g) → CH3CH2CH2CH2 (g) CH3CH2CH3 (g) ΔrG°(525 K) = 0.1 ± 2 kJ/molSeetula 1997, 3rd Law, est unc
0.1732596.1 CH3CH2CH(CH3)2 (g) CH3CH2CH3 (g) → CH(CH3)3 (g) CH3CH2CH2CH3 (g) ΔrH°(298.15 K) = -0.48 ± 0.31 kcal/molProsen 1945
0.1732355.5 CH(CH2CH2) (g) CH3CH2CH3 (g) → CH3CHCH3 (g) CH2(CH2CH2) (g) ΔrH°(0 K) = -10.67 ± 0.85 kcal/molRuscic W1RO
0.1652269.2 [CH3CH2CH3]+ (g) C2H6 (g) → CH3CH2CH3 (g) [C2H6]+ (g) ΔrH°(0 K) = 0.580 ± 0.039 eVRuscic G3X
0.1542355.2 CH(CH2CH2) (g) CH3CH2CH3 (g) → CH3CHCH3 (g) CH2(CH2CH2) (g) ΔrH°(0 K) = -10.66 ± 0.90 kcal/molRuscic G4
0.1542355.4 CH(CH2CH2) (g) CH3CH2CH3 (g) → CH3CHCH3 (g) CH2(CH2CH2) (g) ΔrH°(0 K) = -10.71 ± 0.90 kcal/molRuscic CBS-n
0.1542355.1 CH(CH2CH2) (g) CH3CH2CH3 (g) → CH3CHCH3 (g) CH2(CH2CH2) (g) ΔrH°(0 K) = -10.51 ± 0.90 kcal/molRuscic G3X
0.1452269.3 [CH3CH2CH3]+ (g) C2H6 (g) → CH3CH2CH3 (g) [C2H6]+ (g) ΔrH°(0 K) = 0.596 ± 0.039 (×1.067) eVRuscic G4
0.1362269.4 [CH3CH2CH3]+ (g) C2H6 (g) → CH3CH2CH3 (g) [C2H6]+ (g) ΔrH°(0 K) = 0.574 ± 0.043 eVRuscic CBS-n
0.1362269.1 [CH3CH2CH3]+ (g) C2H6 (g) → CH3CH2CH3 (g) [C2H6]+ (g) ΔrH°(0 K) = 0.561 ± 0.043 eVRuscic G3B3
0.1312293.2 CH3CH2CH3 (g) → [CH3CHCH3]+ (g) H (g) ΔrH°(0 K) = 11.630 ± 0.005 eVStevens 2010
0.1282266.1 CH3CH2CH3 (g) + 5 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -2219.15 ± 0.46 kJ/molPittam 1972
0.1252355.3 CH(CH2CH2) (g) CH3CH2CH3 (g) → CH3CHCH3 (g) CH2(CH2CH2) (g) ΔrH°(0 K) = -10.63 ± 1.0 kcal/molRuscic CBS-n
0.1182562.5 CH3CH(CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2) (g) CH(CH3)3 (g) ΔrH°(0 K) = 0.10 ± 0.85 kcal/molRuscic W1RO
0.1102590.5 CH3CH2CH2CH2CH3 (g) CH3CH2CH3 (g) → 2 CH3CH2CH2CH3 (g) ΔrH°(0 K) = -0.12 ± 0.35 kcal/molKarton 2009b
0.1052562.2 CH3CH(CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2) (g) CH(CH3)3 (g) ΔrH°(0 K) = -0.07 ± 0.90 kcal/molRuscic G4
0.1052562.1 CH3CH(CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2) (g) CH(CH3)3 (g) ΔrH°(0 K) = 0.06 ± 0.90 kcal/molRuscic G3X
0.1052562.4 CH3CH(CH2CH2) (g) CH3CH2CH3 (g) → CH2(CH2CH2) (g) CH(CH3)3 (g) ΔrH°(0 K) = 0.11 ± 0.90 kcal/molRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122b of the Thermochemical Network (2016); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017) [DOI: 10.1021/acs.jpca.7b05945]
6   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.