Selected ATcT [1, 2] enthalpy of formation based on version 1.122b of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122 [4][5] to include the best possible isomerization of HCN and HNC [6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
PropynylideneHCCCH (g, singlet)[CH]=C=[CH]597.6599.4± 1.2kJ/mol38.0480 ±

Representative Geometry of HCCCH (g, singlet)

spin ON           spin OFF

Top contributors to the provenance of ΔfH° of HCCCH (g, singlet)

The 20 contributors listed below account only for 74.2% of the provenance of ΔfH° of HCCCH (g, singlet).
A total of 79 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Reaction Measured Quantity Reference
9.62448.7 HCCCH (g, triplet) → HCCCH (g, cis singlet) ΔrH°(0 K) = 53.81 ± 3 kJ/molAguilera-Iparraguirre 2008, est unc
4.92456.1 [HCCCH]- (g, transoid 2B) HCCCH (g, triplet) → [HCCCH]- (g, cisoid 2A) HCCCH (g, trans singlet) ΔrH°(0 K) = 0.583 ± 0.010 eVOsborn 2014
4.82472.5 HCCCH (g, cis singlet) → CH2CC (g) ΔrH°(0 K) = -10.53 ± 1.2 kcal/molRuscic W1RO
4.12472.2 HCCCH (g, cis singlet) → CH2CC (g) ΔrH°(0 K) = -10.43 ± 1.3 kcal/molRuscic G4
3.92455.4 [HCCCH]- (g, transoid 2B) HCCCH (g, cis singlet) → HCCCH (g, trans singlet) [HCCCH]- (g, cisoid 2A) ΔrH°(0 K) = 227 ± 300 cm-1Ruscic W1RO
3.72436.5 [HCCCH]- (g, cisoid 2A) → HCCCH (g, cis singlet) ΔrH°(0 K) = 1.681 ± 0.050 eVRuscic W1RO
3.72455.2 [HCCCH]- (g, transoid 2B) HCCCH (g, cis singlet) → HCCCH (g, trans singlet) [HCCCH]- (g, cisoid 2A) ΔrH°(0 K) = 220 ± 310 cm-1Ruscic G4
3.62455.1 [HCCCH]- (g, transoid 2B) HCCCH (g, cis singlet) → HCCCH (g, trans singlet) [HCCCH]- (g, cisoid 2A) ΔrH°(0 K) = 221 ± 315 cm-1Ruscic G3X
3.62450.4 HCCCH (g, cis singlet) → HCCCH (g, trans singlet) ΔrH°(0 K) = 1 ± 300 cm-1Ruscic W1RO
3.52472.1 HCCCH (g, cis singlet) → CH2CC (g) ΔrH°(0 K) = -10.49 ± 1.4 kcal/molRuscic G3X
3.42448.5 HCCCH (g, triplet) → HCCCH (g, cis singlet) ΔrH°(0 K) = 4924 ± 420 cm-1Ruscic W1RO
3.32450.2 HCCCH (g, cis singlet) → HCCCH (g, trans singlet) ΔrH°(0 K) = 35 ± 310 cm-1Ruscic G4
3.22450.1 HCCCH (g, cis singlet) → HCCCH (g, trans singlet) ΔrH°(0 K) = 6 ± 315 cm-1Ruscic G3X
2.92448.2 HCCCH (g, triplet) → HCCCH (g, cis singlet) ΔrH°(0 K) = 4156 ± 450 cm-1Ruscic G4
2.92455.3 [HCCCH]- (g, transoid 2B) HCCCH (g, cis singlet) → HCCCH (g, trans singlet) [HCCCH]- (g, cisoid 2A) ΔrH°(0 K) = 220 ± 350 cm-1Ruscic CBS-n
2.72472.3 HCCCH (g, cis singlet) → CH2CC (g) ΔrH°(0 K) = -10.95 ± 1.6 kcal/molRuscic CBS-n
2.62450.3 HCCCH (g, cis singlet) → HCCCH (g, trans singlet) ΔrH°(0 K) = 5 ± 350 cm-1Ruscic CBS-n
2.52436.2 [HCCCH]- (g, cisoid 2A) → HCCCH (g, cis singlet) ΔrH°(0 K) = 1.678 ± 0.061 eVRuscic G4
2.52448.1 HCCCH (g, triplet) → HCCCH (g, cis singlet) ΔrH°(0 K) = 4287 ± 490 cm-1Ruscic G3X
1.92448.3 HCCCH (g, triplet) → HCCCH (g, cis singlet) ΔrH°(0 K) = 4967 ± 560 cm-1Ruscic CBS-n

Top 10 species with enthalpies of formation correlated to the ΔfH° of HCCCH (g, singlet)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
100.0 PropynylideneHCCCH (g, cis singlet)[CH]=C=[CH]597.6599.3± 1.2kJ/mol38.0480 ±
46.2 PropynylideneHCCCH (g, trans singlet)[CH]=C=[CH]597.3599.2± 1.1kJ/mol38.0480 ±
40.8 PropynylideneHCCCH (g, triplet)[CH]=C=[CH]543.38546.37± 0.63kJ/mol38.0480 ±
40.8 PropynylideneHCCCH (g)[CH]=C=[CH]543.38546.37± 0.63kJ/mol38.0480 ±
26.1 Propargylenide[HCCCH]- (g)C#C[CH-]434.6437.8± 1.1kJ/mol38.0485 ±
26.1 Propargylenide[HCCCH]- (g, transoid 2B)C#C[CH-]434.6437.1± 1.1kJ/mol38.0485 ±
23.4 Propargylenide[HCCCH]- (g, cisoid 2A)C#C[CH-]437.0439.5± 1.1kJ/mol38.0485 ±
20.6 PropadienylideneCH2CC (g)C=C=[C]554.44555.59± 0.42kJ/mol38.0480 ±
20.2 Propadienylidenide[CH2CC]- (g)C=C=[C-]381.18382.08± 0.43kJ/mol38.0485 ±
16.8 CyclopropenylideneC(CHCH) (g)C1=C=C1497.07496.12± 0.47kJ/mol38.0480 ±

Most Influential reactions involving HCCCH (g, singlet)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Reaction Measured Quantity Reference
1.0002447.1 HCCCH (g, singlet) → HCCCH (g, cis singlet) ΔrH°(0 K) = 0.00 ± 0.00 cm-1Ruscic W1RO, Ruscic G4

1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122b of the Thermochemical Network (2016); available at
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017) [DOI: 10.1021/acs.jpca.7b05945]
6   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D.

This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.