Selected ATcT [1, 2] enthalpy of formation based on version 1.122 of the Thermochemical Network [3]

This version of ATcT results was partially described in Ruscic et al. [4], and was also used for the initial development of high-accuracy ANLn composite electronic structure methods [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Acetic acidCH3C(O)OH (g, syn-anti equilib)CC(=O)O-418.38-432.50± 0.54kJ/mol60.0520 ±
0.0017
64-19-7*0

Representative Geometry of CH3C(O)OH (g, syn-anti equilib)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH3C(O)OH (g, syn-anti equilib)

The 20 contributors listed below account only for 89.4% of the provenance of ΔfH° of CH3C(O)OH (g, syn-anti equilib).
A total of 21 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
26.03159.4 CH3C(O)OH (l) → CH3C(O)OH (g, syn-anti equilib) ΔrH°(298.15 K) = 50.3 ± 1.0 kJ/molVerevkin 2000, note unc
17.83152.9 CH3C(O)OH (g, syn) → 2 C (g) + 4 H (g) + 2 O (g) ΔrH°(0 K) = 764.37 ± 0.30 kcal/molKarton 2011
11.53159.3 CH3C(O)OH (l) → CH3C(O)OH (g, syn-anti equilib) ΔrH°(298.15 K) = 51.6 ± 1.5 kJ/molKonicek 1970
7.23156.2 CH3C(O)OH (g, syn-anti equilib) → OH (g) [CH3CO]+ (g) ΔrH°(0 K) = 11.641 ± 0.008 eVShuman 2010
5.13152.8 CH3C(O)OH (g, syn) → 2 C (g) + 4 H (g) + 2 O (g) ΔrH°(0 K) = 764.28 ± 0.56 kcal/molKarton 2011
3.83159.1 CH3C(O)OH (l) → CH3C(O)OH (g, syn-anti equilib) ΔrH°(298.15 K) = 51.60 ± 2.6 kJ/molMajer 1985
3.14089.1 (CH3CO)2 (cr,l) → (CH3CO)2 (g) ΔrH°(298.15 K) = 9.25 ± 0.25 kcal/molNicholson 1954
1.63159.2 CH3C(O)OH (l) → CH3C(O)OH (g, syn-anti equilib) ΔrH°(298.15 K) = 52.3 ± 4 kJ/molNBS Tables 1989
1.53158.6 CH3C(O)OH (g, syn) CH4 (g) → HC(O)OH (g, syn) C2H6 (g) ΔrH°(0 K) = 10.97 ± 1.0 kcal/molRuscic CBS-n
1.23158.3 CH3C(O)OH (g, syn) CH4 (g) → HC(O)OH (g, syn) C2H6 (g) ΔrH°(0 K) = 10.94 ± 1.1 kcal/molRuscic G3X
1.24045.1 CH3C(O)CH3 (g) → [CH3CO]+ (g) CH3 (g) ΔrH°(0 K) = 10.563 ± 0.010 (×2.89) eVFogleman 2004
1.24090.1 (CH3CO)2 (g) → CH3CO (g) [CH3CO]+ (g) ΔrH°(0 K) = 10.090 ± 0.006 eVFogleman 2004
1.13156.1 CH3C(O)OH (g, syn-anti equilib) → OH (g) [CH3CO]+ (g) ΔrH°(0 K) = 11.62 ± 0.02 eVTraeger 1982, AE corr, est unc
1.03158.1 CH3C(O)OH (g, syn) CH4 (g) → HC(O)OH (g, syn) C2H6 (g) ΔrH°(0 K) = 10.85 ± 1.2 kcal/molRuscic G3B3
1.03158.2 CH3C(O)OH (g, syn) CH4 (g) → HC(O)OH (g, syn) C2H6 (g) ΔrH°(0 K) = 10.95 ± 1.2 kcal/molRuscic G3
1.03160.2 CH3C(O)OH (l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -209.125 ± 0.054 kcal/molLebedeva 1964
0.93158.5 CH3C(O)OH (g, syn) CH4 (g) → HC(O)OH (g, syn) C2H6 (g) ΔrH°(0 K) = 10.89 ± 1.3 kcal/molRuscic CBS-n
0.83152.7 CH3C(O)OH (g, syn) → 2 C (g) + 4 H (g) + 2 O (g) ΔrH°(0 K) = 764.29 ± 1.35 kcal/molKarton 2011
0.72811.8 CH3CO (g) → [CH3CO]+ (g) ΔrH°(0 K) = 6.966 ± 0.040 eVRuscic W1RO
0.63158.4 CH3C(O)OH (g, syn) CH4 (g) → HC(O)OH (g, syn) C2H6 (g) ΔrH°(0 K) = 10.97 ± 1.6 kcal/molRuscic CBS-n

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3C(O)OH (g, syn-anti equilib)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 Acetic acidCH3C(O)OH (g, syn)CC(=O)O-418.38-432.50± 0.54kJ/mol60.0520 ±
0.0017
64-19-7*1
50.7 Acetylium[CH3CO]+ (g)C[C+]=O667.18660.02± 0.65kJ/mol43.0441 ±
0.0016
15762-07-9*0
47.7 Acetic acidCH3C(O)OH (g, anti)CC(=O)O-397.3-411.1± 1.2kJ/mol60.0520 ±
0.0017
64-19-7*2
33.3 2,3-Butanedione(CH3CO)2 (g)CC(=O)C(=O)C-309.88-326.44± 0.78kJ/mol86.0892 ±
0.0033
431-03-8*0
16.8 Acetic acidCH3C(O)OH (l)CC(=O)O-484.09-483.66± 0.18kJ/mol60.0520 ±
0.0017
64-19-7*500
13.3 2,3-Butanedione(CH3CO)2 (cr,l)CC(=O)C(=O)C-365.46± 0.54kJ/mol86.0892 ±
0.0033
431-03-8*500
12.6 Acetic acidCH3C(O)OH (aq, 700 H2O)CC(=O)O-484.90± 0.23kJ/mol60.0520 ±
0.0017
64-19-7*835
12.6 Acetic acidCH3C(O)OH (aq)CC(=O)O-485.18± 0.23kJ/mol60.0520 ±
0.0017
64-19-7*800
12.6 Acetic acidCH3C(O)OH (aq, 1000 H2O)CC(=O)O-484.91± 0.23kJ/mol60.0520 ±
0.0017
64-19-7*839
12.6 Acetic acidCH3C(O)OH (aq, 1500 H2O)CC(=O)O-484.91± 0.23kJ/mol60.0520 ±
0.0017
64-19-7*840

Most Influential reactions involving CH3C(O)OH (g, syn-anti equilib)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0003151.1 CH3C(O)OH (g, syn-anti equilib) → CH3C(O)OH (g, syn) ΔrH°(0 K) = 0 ± 0 cm-1Ruscic G3B3
0.5993156.2 CH3C(O)OH (g, syn-anti equilib) → OH (g) [CH3CO]+ (g) ΔrH°(0 K) = 11.641 ± 0.008 eVShuman 2010
0.2903159.4 CH3C(O)OH (l) → CH3C(O)OH (g, syn-anti equilib) ΔrH°(298.15 K) = 50.3 ± 1.0 kJ/molVerevkin 2000, note unc
0.1293159.3 CH3C(O)OH (l) → CH3C(O)OH (g, syn-anti equilib) ΔrH°(298.15 K) = 51.6 ± 1.5 kJ/molKonicek 1970
0.0953156.1 CH3C(O)OH (g, syn-anti equilib) → OH (g) [CH3CO]+ (g) ΔrH°(0 K) = 11.62 ± 0.02 eVTraeger 1982, AE corr, est unc
0.0423159.1 CH3C(O)OH (l) → CH3C(O)OH (g, syn-anti equilib) ΔrH°(298.15 K) = 51.60 ± 2.6 kJ/molMajer 1985
0.0183159.2 CH3C(O)OH (l) → CH3C(O)OH (g, syn-anti equilib) ΔrH°(298.15 K) = 52.3 ± 4 kJ/molNBS Tables 1989


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122 of the Thermochemical Network (2016); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017) [DOI: 10.1021/acs.jpca.7b05945]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.