Selected ATcT [1, 2] enthalpy of formation based on version 1.122 of the Thermochemical Network [3]

This version of ATcT results was partially described in Ruscic et al. [4], and was also used for the initial development of high-accuracy ANLn composite electronic structure methods [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
TrifluoromethylCF3 (g)[C](F)(F)F-465.15-467.94± 0.49kJ/mol69.00591 ±
0.00080
2264-21-3*0

Representative Geometry of CF3 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CF3 (g)

The 20 contributors listed below account only for 55.1% of the provenance of ΔfH° of CF3 (g).
A total of 178 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
8.93620.1 CF3 (g) → C (g) + 3/2 F2 (g) ΔrH°(0 K) = 1176.44 ± 1.6 kJ/molCsontos 2010
7.33615.11 CF3 (g) → C (g) + 3 F (g) ΔrH°(0 K) = 336.75 ± 0.4 kcal/molFeller 2008
6.23650.9 CF3 (g) → CF2 (g) F (g) ΔrH°(0 K) = 348.56 ± 1.6 kJ/molCsontos 2010
4.73621.9 CF4 (g) → CF3 (g) F (g) ΔrH°(0 K) = 540.42 ± 2.0 kJ/molCsontos 2010
4.13635.2 CF3Br (g) → CF3 (g) Br (g) ΔrH°(298.15 K) = 70.8 ± 0.2 kcal/molRuscic 1998, Skorobogatov 1996, Dymov 1991
3.03686.1 CF3CF3 (g) → 2 C (g) + 3 F2 (g) ΔrH°(0 K) = 2754.640 ± 3.2 kJ/molNagy 2014
2.93629.1 CF3H (g) Br (g) → CF3 (g) HBr (g) ΔrH°(298.15 K) = 18.89 ± 0.5 kcal/molSyverud 1969, Arthur 1969, Amphlett 1968
2.83653.1 CF (g) → [CF]+ (g) ΔrH°(0 K) = 9.11 ± 0.01 eVDyke 1984a
2.03637.1 CF3H (g) H (g) → CF3 (g) H2 (g) ΔrH°(298.15 K) = 2.09 ± 0.6 kcal/molRuscic 1998, Hranisavljevic 1998a
1.83635.3 CF3Br (g) → CF3 (g) Br (g) ΔrH°(298.15 K) = 70.8 ± 0.3 kcal/molRuscic 1998, Hranisavljevic 1998, Asher 1997
1.53464.1 CF3H (g) I2 (g) → CF3I (g) HI (g) ΔrH°(298.15 K) = 17.10 ± 0.34 (×1.067) kcal/molGoy 1967, as quoted by Cox 1970
1.53628.1 CF3H (g) Cl (g) → CF3 (g) HCl (g) ΔrH°(298.15 K) = 2.93 ± 0.7 kcal/molSyverud 1969, Coomber 1966, Arthur 1969, Amphlett 1966
1.13615.10 CF3 (g) → C (g) + 3 F (g) ΔrH°(0 K) = 336.50 ± 1.00 kcal/molNguyen 2008
1.03459.1 CF3Br (g) Cl2 (g) → CF3Cl (g) BrCl (g) ΔrH°(298.15 K) = -10.69 ± 0.30 kcal/molCoomber 1967b, as quoted by Cox 1970
1.03688.5 CF3CF3 (g) + 2 CH3 (g) → C2H6 (g) + 2 CF3 (g) ΔrH°(0 K) = 8.84 ± 0.9 kcal/molRuscic W1RO
1.03636.2 CF3I (g) → CF3 (g) I (g) ΔrH°(298.15 K) = 54.4 ± 0.4 kcal/molSkorobogatov 1991
0.83688.4 CF3CF3 (g) + 2 CH3 (g) → C2H6 (g) + 2 CF3 (g) ΔrH°(0 K) = 8.50 ± 1.0 kcal/molRuscic CBS-n
0.83688.2 CF3CF3 (g) + 2 CH3 (g) → C2H6 (g) + 2 CF3 (g) ΔrH°(0 K) = 8.54 ± 1.0 kcal/molRuscic G4
0.73600.2 CF4 (g) CF2Br2 (g) → 2 CF3Br (g) ΔrH°(0 K) = 2.99 ± 1.2 kcal/molRuscic G3
0.73600.1 CF4 (g) CF2Br2 (g) → 2 CF3Br (g) ΔrH°(0 K) = 3.06 ± 1.2 kcal/molRuscic G3B3

Top 10 species with enthalpies of formation correlated to the ΔfH° of CF3 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
62.7 BromotrifluoromethaneCF3Br (g)C(F)(F)(F)Br-639.45-651.57± 0.50kJ/mol148.9099 ±
0.0013
75-63-8*0
61.2 Trifluoromethylium[CF3]+ (g)[C+](F)(F)F409.00405.93± 0.51kJ/mol69.00536 ±
0.00080
18851-76-8*0
58.0 IodotrifluoromethaneCF3I (g)C(F)(F)(F)I-583.99-589.87± 0.54kJ/mol195.91038 ±
0.00080
2314-97-8*0
53.5 TetrafluoroethyleneC2F4 (g)C(=C(F)F)(F)F-671.52-674.93± 0.57kJ/mol100.0150 ±
0.0016
116-14-3*0
37.8 HexafluoroethaneCF3CF3 (g)C(F)(F)(F)C(F)(F)F-1334.5-1342.8± 1.5kJ/mol138.0118 ±
0.0016
76-16-4*0
27.8 FluoroformCF3H (g)C(F)(F)F-688.92-695.87± 0.43kJ/mol70.01385 ±
0.00080
75-46-7*0
26.4 FluoroformCF3H (l)C(F)(F)F-704.33± 0.46kJ/mol70.01385 ±
0.00080
75-46-7*590
26.2 1,1-DifluoroethaneCHF2CH3 (g)CC(F)F-489.09-502.81± 0.65kJ/mol66.0500 ±
0.0016
75-37-6*0
25.2 ChlorotrifluoromethaneCF3Cl (g)C(F)(F)(F)Cl-704.97-710.08± 0.72kJ/mol104.4586 ±
0.0012
75-72-9*0
-32.1 Fluoromethyliumylidene[CF]+ (g)[C+]F1122.611125.83± 0.48kJ/mol31.00855 ±
0.00080
33412-11-2*0

Most Influential reactions involving CF3 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.7093663.1 [CF3]+ (g) CF (g) → CF3 (g) [CF]+ (g) ΔrH°(0 K) = 0.055 ± 0.003 eVAsher 1997
0.4453701.1 C2F4 (g) → CF3 (g) [CF]+ (g) ΔrH°(0 K) = 13.777 ± 0.005 eVAsher 1997
0.2513635.2 CF3Br (g) → CF3 (g) Br (g) ΔrH°(298.15 K) = 70.8 ± 0.2 kcal/molRuscic 1998, Skorobogatov 1996, Dymov 1991
0.1603617.10 [CF3]- (g) → CF3 (g) ΔrH°(0 K) = 1.77 ± 0.04 eVDixon 1999, note unc2
0.1473688.5 CF3CF3 (g) + 2 CH3 (g) → C2H6 (g) + 2 CF3 (g) ΔrH°(0 K) = 8.84 ± 0.9 kcal/molRuscic W1RO
0.1193688.2 CF3CF3 (g) + 2 CH3 (g) → C2H6 (g) + 2 CF3 (g) ΔrH°(0 K) = 8.54 ± 1.0 kcal/molRuscic G4
0.1193688.4 CF3CF3 (g) + 2 CH3 (g) → C2H6 (g) + 2 CF3 (g) ΔrH°(0 K) = 8.50 ± 1.0 kcal/molRuscic CBS-n
0.1183650.9 CF3 (g) → CF2 (g) F (g) ΔrH°(0 K) = 348.56 ± 1.6 kJ/molCsontos 2010
0.1113635.3 CF3Br (g) → CF3 (g) Br (g) ΔrH°(298.15 K) = 70.8 ± 0.3 kcal/molRuscic 1998, Hranisavljevic 1998, Asher 1997
0.1023617.1 [CF3]- (g) → CF3 (g) ΔrH°(0 K) = 1.82 ± 0.05 eVDeyerl 2001
0.1023617.9 [CF3]- (g) → CF3 (g) ΔrH°(0 K) = 1.755 ± 0.050 eVRuscic W1RO
0.0903620.1 CF3 (g) → C (g) + 3/2 F2 (g) ΔrH°(0 K) = 1176.44 ± 1.6 kJ/molCsontos 2010
0.0813615.11 CF3 (g) → C (g) + 3 F (g) ΔrH°(0 K) = 336.75 ± 0.4 kcal/molFeller 2008
0.0783636.2 CF3I (g) → CF3 (g) I (g) ΔrH°(298.15 K) = 54.4 ± 0.4 kcal/molSkorobogatov 1991
0.0733629.1 CF3H (g) Br (g) → CF3 (g) HBr (g) ΔrH°(298.15 K) = 18.89 ± 0.5 kcal/molSyverud 1969, Arthur 1969, Amphlett 1968
0.0693617.5 [CF3]- (g) → CF3 (g) ΔrH°(0 K) = 1.765 ± 0.061 eVRuscic G4
0.0633663.2 [CF3]+ (g) CF (g) → CF3 (g) [CF]+ (g) ΔrH°(0 K) = 0.06 ± 0.01 eVWalter 1969
0.0603621.9 CF4 (g) → CF3 (g) F (g) ΔrH°(0 K) = 540.42 ± 2.0 kJ/molCsontos 2010
0.0523687.8 CF3CF3 (g) → 2 CF3 (g) ΔrH°(0 K) = 96.93 ± 1.50 kcal/molRuscic W1RO
0.0523617.11 [CF3]- (g) → CF3 (g) ΔrH°(0 K) = 1.83 ± 0.07 eVRicca 1999, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122 of the Thermochemical Network (2016); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017) [DOI: 10.1021/acs.jpca.7b05945]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.