Selected ATcT [1, 2] enthalpy of formation based on version 1.122 of the Thermochemical Network [3]

This version of ATcT results was partially described in Ruscic et al. [4], and was also used for the initial development of high-accuracy ANLn composite electronic structure methods [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Oxoammoniumyl[HNO]+ (g)[NH+]=O1092.621089.69± 0.67kJ/mol31.01353 ±
0.00032
63559-87-5*0

Representative Geometry of [HNO]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [HNO]+ (g)

The 17 contributors listed below account for 90.3% of the provenance of ΔfH° of [HNO]+ (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
45.31353.2 HNO (g) → [HNO]+ (g) ΔrH°(0 K) = 10.18 ± 0.01 eVBaker 1990
31.41353.1 HNO (g) → [HNO]+ (g) ΔrH°(0 K) = 10.184 ± 0.012 eVKuo 1997
2.81353.10 HNO (g) → [HNO]+ (g) ΔrH°(0 K) = 10.192 ± 0.040 eVRuscic W1RO
1.11355.8 [HNO]+ (g) → H (g) N (g) O (g) ΔrH°(0 K) = -38.42 ± 1.50 kcal/molRuscic W1RO
0.91355.7 [HNO]+ (g) → H (g) N (g) O (g) ΔrH°(0 K) = -37.49 ± 1.60 kcal/molRuscic CBS-n
0.91355.4 [HNO]+ (g) → H (g) N (g) O (g) ΔrH°(0 K) = -38.07 ± 1.60 kcal/molRuscic G4
0.81355.3 [HNO]+ (g) → H (g) N (g) O (g) ΔrH°(0 K) = -38.77 ± 1.72 kcal/molRuscic G3X
0.81353.6 HNO (g) → [HNO]+ (g) ΔrH°(0 K) = 10.208 ± 0.073 eVRuscic G4
0.81353.9 HNO (g) → [HNO]+ (g) ΔrH°(0 K) = 10.139 ± 0.075 eVRuscic CBS-n
0.71357.4 HNO (g) → H (g) NO (g) ΔrH°(0 K) = 16450 ± 10 cm-1Dixon 1981, Dixon 1984, Dixon 1996
0.71308.2 NH2OH (g, trans) → [NOH]+ (g) H2 (g) ΔrH°(0 K) = 12.34 ± 0.03 (×1.067) eVKutina 1982
0.71355.1 [HNO]+ (g) → H (g) N (g) O (g) ΔrH°(0 K) = -38.94 ± 1.86 kcal/molRuscic G3B3
0.61371.9 [HNO]+ (g) → [NOH]+ (g) ΔrH°(0 K) = 5806 ± 400 cm-1Ben Houria 2001, est unc
0.51371.7 [HNO]+ (g) → [NOH]+ (g) ΔrH°(0 K) = 5896 ± 420 cm-1Ruscic CBS-n
0.51371.8 [HNO]+ (g) → [NOH]+ (g) ΔrH°(0 K) = 5719 ± 420 cm-1Ruscic W1RO
0.51355.6 [HNO]+ (g) → H (g) N (g) O (g) ΔrH°(0 K) = -37.60 ± 2.16 kcal/molRuscic CBS-n
0.51353.5 HNO (g) → [HNO]+ (g) ΔrH°(0 K) = 10.230 ± 0.093 eVRuscic G3X

Top 10 species with enthalpies of formation correlated to the ΔfH° of [HNO]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
22.1 Hydroxyaminiumyl[NOH]+ (g)[N+]O1160.61157.7± 1.3kJ/mol31.01353 ±
0.00032
63559-88-6*0
14.2 Nitrosyl hydrideHNO (g)N=O109.93106.96± 0.11kJ/mol31.01408 ±
0.00032
14332-28-6*0
7.4 Nitric oxideNO (g)[N]=O90.61791.121± 0.065kJ/mol30.00614 ±
0.00031
10102-43-9*0
7.4 Nitrogen dioxideONO (g)O=[N]=O36.85634.049± 0.065kJ/mol46.00554 ±
0.00060
10102-44-0*0
7.4 Nitrosyl ion[NO]+ (g)N#[O+]984.485984.479± 0.065kJ/mol30.00559 ±
0.00031
14452-93-8*0
7.2 Dinitrogen tetraoxideO2NNO2 (g)O=N(=O)N(=O)=O20.1510.86± 0.14kJ/mol92.0111 ±
0.0012
10544-72-6*0
7.2 Nitrosyl chlorideClNO (g)ClN=O54.45152.549± 0.067kJ/mol65.45884 ±
0.00095
2696-92-6*0
7.0 Dinitrogen dioxideONNO (g, cis)O=NN=O172.89171.12± 0.14kJ/mol60.01228 ±
0.00062
16824-89-8*2
7.0 Dinitrogen dioxideONNO (g)O=NN=O172.89171.12± 0.14kJ/mol60.01228 ±
0.00062
16824-89-8*0
6.7 Nitrogen sesquioxideONNO2 (g)O=N-[N](=O)[O]90.7286.15± 0.15kJ/mol76.01168 ±
0.00091
10544-73-7*0

Most Influential reactions involving [HNO]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.4651353.2 HNO (g) → [HNO]+ (g) ΔrH°(0 K) = 10.18 ± 0.01 eVBaker 1990
0.3231353.1 HNO (g) → [HNO]+ (g) ΔrH°(0 K) = 10.184 ± 0.012 eVKuo 1997
0.0711371.9 [HNO]+ (g) → [NOH]+ (g) ΔrH°(0 K) = 5806 ± 400 cm-1Ben Houria 2001, est unc
0.0651371.8 [HNO]+ (g) → [NOH]+ (g) ΔrH°(0 K) = 5719 ± 420 cm-1Ruscic W1RO
0.0651371.7 [HNO]+ (g) → [NOH]+ (g) ΔrH°(0 K) = 5896 ± 420 cm-1Ruscic CBS-n
0.0561371.4 [HNO]+ (g) → [NOH]+ (g) ΔrH°(0 K) = 5584 ± 450 cm-1Ruscic G4
0.0471371.3 [HNO]+ (g) → [NOH]+ (g) ΔrH°(0 K) = 5532 ± 490 cm-1Ruscic G3X
0.0411371.1 [HNO]+ (g) → [NOH]+ (g) ΔrH°(0 K) = 5478 ± 525 cm-1Ruscic G3B3
0.0381371.2 [HNO]+ (g) → [NOH]+ (g) ΔrH°(0 K) = 5142 ± 525 (×1.044) cm-1Ruscic G3
0.0361371.6 [HNO]+ (g) → [NOH]+ (g) ΔrH°(0 K) = 5832 ± 560 cm-1Ruscic CBS-n
0.0291353.10 HNO (g) → [HNO]+ (g) ΔrH°(0 K) = 10.192 ± 0.040 eVRuscic W1RO
0.0231371.5 [HNO]+ (g) → [NOH]+ (g) ΔrH°(0 K) = 5534 ± 700 cm-1Ruscic CBS-n
0.0111355.8 [HNO]+ (g) → H (g) N (g) O (g) ΔrH°(0 K) = -38.42 ± 1.50 kcal/molRuscic W1RO
0.0091355.7 [HNO]+ (g) → H (g) N (g) O (g) ΔrH°(0 K) = -37.49 ± 1.60 kcal/molRuscic CBS-n
0.0091355.4 [HNO]+ (g) → H (g) N (g) O (g) ΔrH°(0 K) = -38.07 ± 1.60 kcal/molRuscic G4
0.0081353.6 HNO (g) → [HNO]+ (g) ΔrH°(0 K) = 10.208 ± 0.073 eVRuscic G4
0.0081355.3 [HNO]+ (g) → H (g) N (g) O (g) ΔrH°(0 K) = -38.77 ± 1.72 kcal/molRuscic G3X
0.0081353.9 HNO (g) → [HNO]+ (g) ΔrH°(0 K) = 10.139 ± 0.075 eVRuscic CBS-n
0.0071371.10 [HNO]+ (g) → [NOH]+ (g) ΔrH°(0 K) = 0.66 ± 0.15 eVGonzalez 1998, est unc
0.0071355.1 [HNO]+ (g) → H (g) N (g) O (g) ΔrH°(0 K) = -38.94 ± 1.86 kcal/molRuscic G3B3


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122 of the Thermochemical Network (2016); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017) [DOI: 10.1021/acs.jpca.7b05945]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.