Selected ATcT [1, 2] enthalpy of formation based on version 1.122 of the Thermochemical Network [3]

This version of ATcT results was partially described in Ruscic et al. [4], and was also used for the initial development of high-accuracy ANLn composite electronic structure methods [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Ethonium[C2H7]+ (g, bridged C2)[CH3+][H][CH3]874.54858.27± 0.61kJ/mol31.0764 ±
0.0017
24669-33-8*1

Representative Geometry of [C2H7]+ (g, bridged C2)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [C2H7]+ (g, bridged C2)

The 20 contributors listed below account only for 70.3% of the provenance of ΔfH° of [C2H7]+ (g, bridged C2).
A total of 58 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
20.51738.3 [C2H7]+ (g) CO (g) → [HCO]+ (g) C2H6 (g) ΔrG°(298.15 K) = 1.43 ± 0.3 kcal/molMackay 1981, 3rd Law, note unc5
10.41736.2 [C2H7]+ (g) → [CH3CH2]+ (g) H2 (g) ΔrG°(405 K) = 1.65 ± 0.4 kcal/molHiraoka 1976, 3rd Law
3.71738.2 [C2H7]+ (g) CO (g) → [HCO]+ (g) C2H6 (g) ΔrG°(337 K) = 1.7 ± 0.7 kcal/molSzulejko 1993, 3rd Law, note unc5
3.31739.2 [C2H7]+ (g) C2H4 (g) → [CH3CH2]+ (g) C2H6 (g) ΔrG°(373 K) = -19.5 ± 0.7 kcal/molSzulejko 1993, 3rd Law, note unc5
3.21737.2 [C2H7]+ (g) CH4 (g) → [CH5]+ (g) C2H6 (g) ΔrG°(334 K) = 10.5 ± 0.7 kcal/molSzulejko 1993, 3rd Law, note unc5
2.91733.5 [C2H7]+ (g, bridged C2) H2 (g) → [H3]+ (g) C2H6 (g) ΔrH°(0 K) = 40.04 ± 0.8 kcal/molRuscic W1RO
2.81732.5 [C2H7]+ (g, bridged C2) H2O (g) → [H3O]+ (g) C2H6 (g) ΔrH°(0 K) = -23.50 ± 0.8 kcal/molRuscic W1RO
2.41731.5 [C2H7]+ (g, bridged C2) CH4 (g) → [CH5]+ (g) C2H6 (g) ΔrH°(0 K) = 10.71 ± 0.8 kcal/molRuscic W1RO
2.31730.7 [C2H7]+ (g, bridged C2) → C2H6 (g) H+ (g) ΔrH°(0 K) = 139.99 ± 0.90 kcal/molRuscic W1RO
2.21736.1 [C2H7]+ (g) → [CH3CH2]+ (g) H2 (g) ΔrH°(416 K) = 11.8 ± 0.4 (×2.181) kcal/molHiraoka 1976, 2nd Law
1.81733.4 [C2H7]+ (g, bridged C2) H2 (g) → [H3]+ (g) C2H6 (g) ΔrH°(0 K) = 40.36 ± 1.0 kcal/molRuscic CBS-n
1.81733.2 [C2H7]+ (g, bridged C2) H2 (g) → [H3]+ (g) C2H6 (g) ΔrH°(0 K) = 40.61 ± 1.0 kcal/molRuscic G4
1.81732.4 [C2H7]+ (g, bridged C2) H2O (g) → [H3O]+ (g) C2H6 (g) ΔrH°(0 K) = -23.42 ± 1.0 kcal/molRuscic CBS-n
1.81732.2 [C2H7]+ (g, bridged C2) H2O (g) → [H3O]+ (g) C2H6 (g) ΔrH°(0 K) = -23.55 ± 1.0 kcal/molRuscic G4
1.61736.5 [C2H7]+ (g) → [CH3CH2]+ (g) H2 (g) ΔrG°(375 K) = 2.5 ± 1 kcal/molSzulejko 1993, est unc
1.51731.4 [C2H7]+ (g, bridged C2) CH4 (g) → [CH5]+ (g) C2H6 (g) ΔrH°(0 K) = 11.75 ± 1.0 kcal/molRuscic CBS-n
1.51731.2 [C2H7]+ (g, bridged C2) CH4 (g) → [CH5]+ (g) C2H6 (g) ΔrH°(0 K) = 11.24 ± 1.0 kcal/molRuscic G4
1.31733.1 [C2H7]+ (g, bridged C2) H2 (g) → [H3]+ (g) C2H6 (g) ΔrH°(0 K) = 40.66 ± 1.2 kcal/molRuscic G3X
1.21732.1 [C2H7]+ (g, bridged C2) H2O (g) → [H3O]+ (g) C2H6 (g) ΔrH°(0 K) = -23.15 ± 1.2 kcal/molRuscic G3X
1.11733.3 [C2H7]+ (g, bridged C2) H2 (g) → [H3]+ (g) C2H6 (g) ΔrH°(0 K) = 40.47 ± 1.3 kcal/molRuscic CBS-n

Top 10 species with enthalpies of formation correlated to the ΔfH° of [C2H7]+ (g, bridged C2)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 Ethonium[C2H7]+ (g)[CH3+][H][CH3]874.54858.30± 0.61kJ/mol31.0764 ±
0.0017
24669-33-8*0
25.0 Ethonium[C2H7]+ (g, classical Cs I)[CH3+][H][CH3]889.8871.4± 1.6kJ/mol31.0764 ±
0.0017
24669-33-8*2
22.9 Ethonium[C2H7]+ (g, classical Cs II)[CH3+][H][CH3]896.2878.4± 1.6kJ/mol31.0764 ±
0.0017
24669-33-8*3
19.6 EthaneC2H6 (g)CC-68.29-83.91± 0.14kJ/mol30.0690 ±
0.0017
74-84-0*0
18.9 Ethylium[CH3CH2]+ (g)[CH2+]1[CH2][H]1915.03902.95± 0.32kJ/mol29.0606 ±
0.0016
14936-94-8*0
14.9 EthyleneC2H4 (g)C=C60.9652.45± 0.13kJ/mol28.0532 ±
0.0016
74-85-1*0
14.9 Ethylene cation[C2H4]+ (g)C=[CH2+]1075.281068.07± 0.13kJ/mol28.0526 ±
0.0016
34470-02-5*0
12.3 PropaneCH3CH2CH3 (g)CCC-82.75-105.03± 0.19kJ/mol44.0956 ±
0.0025
74-98-6*0
11.9 Methanium[CH5]+ (g)[CH5+]922.07911.83± 0.44kJ/mol17.04985 ±
0.00087
15135-49-6*0
11.4 Ethyl bromideCH3CH2Br (g)CCBr-41.14-63.09± 0.26kJ/mol108.9651 ±
0.0019
74-96-4*0

Most Influential reactions involving [C2H7]+ (g, bridged C2)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0001735.1 [C2H7]+ (g) → [C2H7]+ (g, bridged C2) ΔrH°(0 K) = 0 ± 0 cm-1Ruscic W1RO, Ruscic G4, Ruscic G3B3, Carneiro 1994, East 1998
0.0971728.6 [C2H7]+ (g, classical Cs II) → [C2H7]+ (g, bridged C2) ΔrH°(0 K) = -4.38 ± 1.2 kcal/molRuscic W1RO
0.0881727.7 [C2H7]+ (g, classical Cs I) → [C2H7]+ (g, bridged C2) ΔrH°(0 K) = -2.92 ± 1.2 kcal/molRuscic W1RO
0.0821728.4 [C2H7]+ (g, classical Cs II) → [C2H7]+ (g, bridged C2) ΔrH°(0 K) = -4.99 ± 1.3 kcal/molRuscic G4
0.0751727.6 [C2H7]+ (g, classical Cs I) → [C2H7]+ (g, bridged C2) ΔrH°(0 K) = -3.64 ± 1.3 kcal/molRuscic CBS-n
0.0751727.4 [C2H7]+ (g, classical Cs I) → [C2H7]+ (g, bridged C2) ΔrH°(0 K) = -3.45 ± 1.3 kcal/molRuscic G4
0.0711728.3 [C2H7]+ (g, classical Cs II) → [C2H7]+ (g, bridged C2) ΔrH°(0 K) = -5.30 ± 1.4 kcal/molRuscic G3X
0.0641727.3 [C2H7]+ (g, classical Cs I) → [C2H7]+ (g, bridged C2) ΔrH°(0 K) = -3.82 ± 1.4 kcal/molRuscic G3X
0.0621728.2 [C2H7]+ (g, classical Cs II) → [C2H7]+ (g, bridged C2) ΔrH°(0 K) = -5.64 ± 1.5 kcal/molRuscic G3
0.0621728.1 [C2H7]+ (g, classical Cs II) → [C2H7]+ (g, bridged C2) ΔrH°(0 K) = -5.03 ± 1.5 kcal/molRuscic G3B3
0.0561727.1 [C2H7]+ (g, classical Cs I) → [C2H7]+ (g, bridged C2) ΔrH°(0 K) = -3.43 ± 1.5 kcal/molRuscic G3B3
0.0561727.2 [C2H7]+ (g, classical Cs I) → [C2H7]+ (g, bridged C2) ΔrH°(0 K) = -4.44 ± 1.5 kcal/molRuscic G3
0.0541728.5 [C2H7]+ (g, classical Cs II) → [C2H7]+ (g, bridged C2) ΔrH°(0 K) = -5.11 ± 1.6 kcal/molRuscic CBS-n
0.0491727.5 [C2H7]+ (g, classical Cs I) → [C2H7]+ (g, bridged C2) ΔrH°(0 K) = -3.82 ± 1.6 kcal/molRuscic CBS-n
0.0421731.5 [C2H7]+ (g, bridged C2) CH4 (g) → [CH5]+ (g) C2H6 (g) ΔrH°(0 K) = 10.71 ± 0.8 kcal/molRuscic W1RO
0.0321732.5 [C2H7]+ (g, bridged C2) H2O (g) → [H3O]+ (g) C2H6 (g) ΔrH°(0 K) = -23.50 ± 0.8 kcal/molRuscic W1RO
0.0311727.8 [C2H7]+ (g, classical Cs I) → [C2H7]+ (g, bridged C2) ΔrH°(0 K) = -3.0 ± 2 kcal/molCarneiro 1994, est unc
0.0311733.5 [C2H7]+ (g, bridged C2) H2 (g) → [H3]+ (g) C2H6 (g) ΔrH°(0 K) = 40.04 ± 0.8 kcal/molRuscic W1RO
0.0271731.4 [C2H7]+ (g, bridged C2) CH4 (g) → [CH5]+ (g) C2H6 (g) ΔrH°(0 K) = 11.75 ± 1.0 kcal/molRuscic CBS-n
0.0271731.2 [C2H7]+ (g, bridged C2) CH4 (g) → [CH5]+ (g) C2H6 (g) ΔrH°(0 K) = 11.24 ± 1.0 kcal/molRuscic G4


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122 of the Thermochemical Network (2016); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017) [DOI: 10.1021/acs.jpca.7b05945]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.