Selected ATcT [1, 2] enthalpy of formation based on version 1.122 of the Thermochemical Network [3]

This version of ATcT results was partially described in Ruscic et al. [4], and was also used for the initial development of high-accuracy ANLn composite electronic structure methods [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Dioxygenyl fluorideFOO (g)FO[O]26.7525.04± 0.27kJ/mol50.99720 ±
0.00060
15499-23-7*0

Representative Geometry of FOO (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of FOO (g)

The 20 contributors listed below account only for 71.9% of the provenance of ΔfH° of FOO (g).
A total of 46 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
9.8537.9 FOO (g) → F (g) O2 (g) ΔrG°(368 K) = 15.31 ± 0.61 (×1.325) kJ/molCampuzano-Jost 1995, 3rd Law
6.9554.3 FOO (g) → FOOF (g) O2 (g) ΔrG°(297 K) = -9.92 ± 1.23 kJ/molAbney 1995, 3rd Law, note unc5, Lyman 1989
6.4537.8 FOO (g) → F (g) O2 (g) ΔrH°(368 K) = 54.21 ± 1.00 kJ/molCampuzano-Jost 1995, 2nd Law
4.9532.6 FOO (g) H (g) → HO2 (g) F (g) ΔrH°(0 K) = -35.82 ± 0.25 kcal/molKarton 2009c
4.1531.7 FOO (g) OH (g) → HO2 (g) FO (g) ΔrH°(0 K) = 14.93 ± 0.25 kcal/molKarton 2009c
4.0538.6 FOO (g) → F (g) O2 (g) ΔrH°(0 K) = 12.27 ± 0.30 kcal/molKarton 2009c
4.0524.9 FOO (g) → F (g) + 2 O (g) ΔrH°(0 K) = 130.15 ± 0.30 kcal/molKarton 2008, Karton 2009c, Karton 2011
4.0524.12 FOO (g) → F (g) + 2 O (g) ΔrH°(0 K) = 130.19 ± 0.3 kcal/molFeller 2008
3.4530.6 FOO (g) → FO (g) O (g) ΔrH°(0 K) = 79.09 ± 0.30 kcal/molKarton 2009c, Karton 2008, Karton 2006, Karton 2011
2.7698.4 ClOO (g) F (g) → FOO (g) Cl (g) ΔrH°(0 K) = -8.27 ± 0.30 kcal/molKarton 2009c
2.5554.4 FOO (g) → FOOF (g) O2 (g) ΔrG°(286 K) = -7.35 ± 1.19 (×1.719) kJ/molCampbell 1988, 3rd Law
2.5532.5 FOO (g) H (g) → HO2 (g) F (g) ΔrH°(0 K) = -35.99 ± 0.35 kcal/molKarton 2009c
2.3538.5 FOO (g) → F (g) O2 (g) ΔrH°(0 K) = 12.24 ± 0.40 kcal/molKarton 2009c
2.3524.8 FOO (g) → F (g) + 2 O (g) ΔrH°(0 K) = 130.01 ± 0.40 kcal/molKarton 2009c, Karton 2011
2.2537.1 FOO (g) → F (g) O2 (g) ΔrG°(320 K) = 19.44 ± 1.32 (×1.269) kJ/molPagsberg 1987, 3rd Law
2.1531.6 FOO (g) OH (g) → HO2 (g) FO (g) ΔrH°(0 K) = 14.73 ± 0.35 kcal/molKarton 2009c
1.9530.5 FOO (g) → FO (g) O (g) ΔrH°(0 K) = 78.89 ± 0.40 kcal/molKarton 2009c, Karton 2011
1.9532.4 FOO (g) H (g) → HO2 (g) F (g) ΔrH°(0 K) = -36.17 ± 0.40 kcal/molKarton 2009c
1.6531.5 FOO (g) OH (g) → HO2 (g) FO (g) ΔrH°(0 K) = 14.71 ± 0.40 kcal/molKarton 2009c
1.5698.3 ClOO (g) F (g) → FOO (g) Cl (g) ΔrH°(0 K) = -8.60 ± 0.40 kcal/molKarton 2009c

Top 10 species with enthalpies of formation correlated to the ΔfH° of FOO (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
40.8 Dioxygen difluorideFOOF (g)FOOF33.6629.93± 0.50kJ/mol69.99561 ±
0.00060
7783-44-0*0
19.5 Fluoroxyl radicalFO (g)[O]F110.26110.88± 0.15kJ/mol34.99780 ±
0.00030
12061-70-0*0
18.2 FluorideF- (g)[F-]-250.901-249.117± 0.048kJ/mol18.99895178 ±
0.00000050
16984-48-8*0
18.2 Fluorine atomF (g, 2P1/2)[F]82.09883.883± 0.048kJ/mol18.99840320 ±
0.00000050
14762-94-8*2
18.2 Fluorine atomF (g, 2P3/2)[F]77.26379.048± 0.048kJ/mol18.99840320 ±
0.00000050
14762-94-8*1
18.2 Fluorine atomF (g)[F]77.26379.369± 0.048kJ/mol18.99840320 ±
0.00000050
14762-94-8*0
18.1 Fluorine atom cationF+ (g)[F+]1758.3111760.610± 0.048kJ/mol18.99785462 ±
0.00000050
14701-13-4*0
17.9 Hydrogen fluorideHF (g)F-272.668-272.715± 0.049kJ/mol20.006343 ±
0.000070
7664-39-3*0
17.4 Fluoroniumyl ion[HF]+ (g)[FH+]1275.5671275.799± 0.050kJ/mol20.005795 ±
0.000070
12381-92-9*0
16.0 Chlorine fluorideClF (g)ClF-55.612-55.707± 0.055kJ/mol54.45110 ±
0.00090
7790-89-8*0

Most Influential reactions involving FOO (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.249525.6 FOO (g) → [FOO]+ (g) ΔrH°(0 K) = 12.377 ± 0.040 eVRuscic W1RO
0.203554.3 FOO (g) → FOOF (g) O2 (g) ΔrG°(297 K) = -9.92 ± 1.23 kJ/molAbney 1995, 3rd Law, note unc5, Lyman 1989
0.194540.5 OFO (g) → FOO (g) ΔrH°(0 K) = -118.3 ± 0.3 (×1.834) kcal/molFeller 2010
0.149526.5 [FOO]- (g) → FOO (g) ΔrH°(0 K) = 2.977 ± 0.050 eVRuscic W1RO
0.113698.4 ClOO (g) F (g) → FOO (g) Cl (g) ΔrH°(0 K) = -8.27 ± 0.30 kcal/molKarton 2009c
0.105559.4 FOOF (g) FO (g) → FOO (g) FOF (g) ΔrH°(0 K) = -21.40 ± 0.35 kcal/molKarton 2009c
0.102537.9 FOO (g) → F (g) O2 (g) ΔrG°(368 K) = 15.31 ± 0.61 (×1.325) kJ/molCampuzano-Jost 1995, 3rd Law
0.100526.3 [FOO]- (g) → FOO (g) ΔrH°(0 K) = 2.935 ± 0.061 eVRuscic G4
0.080559.3 FOOF (g) FO (g) → FOO (g) FOF (g) ΔrH°(0 K) = -21.37 ± 0.40 kcal/molKarton 2009c
0.079531.7 FOO (g) OH (g) → HO2 (g) FO (g) ΔrH°(0 K) = 14.93 ± 0.25 kcal/molKarton 2009c
0.074525.4 FOO (g) → [FOO]+ (g) ΔrH°(0 K) = 12.357 ± 0.073 eVRuscic G4
0.073554.4 FOO (g) → FOOF (g) O2 (g) ΔrG°(286 K) = -7.35 ± 1.19 (×1.719) kJ/molCampbell 1988, 3rd Law
0.072556.7 FOOF (g) → FOO (g) F (g) ΔrH°(0 K) = 16.88 ± 0.40 kcal/molKarton 2009c, Karton 2011
0.072532.6 FOO (g) H (g) → HO2 (g) F (g) ΔrH°(0 K) = -35.82 ± 0.25 kcal/molKarton 2009c
0.066537.8 FOO (g) → F (g) O2 (g) ΔrH°(368 K) = 54.21 ± 1.00 kJ/molCampuzano-Jost 1995, 2nd Law
0.063698.3 ClOO (g) F (g) → FOO (g) Cl (g) ΔrH°(0 K) = -8.60 ± 0.40 kcal/molKarton 2009c
0.051526.2 [FOO]- (g) → FOO (g) ΔrH°(0 K) = 2.902 ± 0.085 eVRuscic G3X
0.047530.6 FOO (g) → FO (g) O (g) ΔrH°(0 K) = 79.09 ± 0.30 kcal/molKarton 2009c, Karton 2008, Karton 2006, Karton 2011
0.046525.3 FOO (g) → [FOO]+ (g) ΔrH°(0 K) = 12.303 ± 0.093 eVRuscic G3X
0.042524.9 FOO (g) → F (g) + 2 O (g) ΔrH°(0 K) = 130.15 ± 0.30 kcal/molKarton 2008, Karton 2009c, Karton 2011


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122 of the Thermochemical Network (2016); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017) [DOI: 10.1021/acs.jpca.7b05945]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.