Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Oxofluoronium

Formula: [FO]+ (g)
CAS RN: 12763-67-6
ATcT ID: 12763-67-6*0
SMILES: O=[F+]
SMILES: [O+]F
InChI: InChI=InChI=1S/FO/c1-2/q+1
InChIKey: AYDJPXZJMHGWTB-UHFFFAOYSA-N
Hills Formula: F1O1+

2D Image:

O=[F+]
Aliases: Oxofluoronium; Fluorooxidanylium; Fluorosyl ion; Fluorosyl cation; Fluorosyl ion (1+); Oxygen fluoride cation; Oxygen fluoride ion (1+); Oxygen monofluoride cation; Oxygen monofluoride ion (1+); [FO]+; FO+; [OF]+; OF+
Relative Molecular Mass: 34.99725 ± 0.00030

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
1342.661342.61± 0.80kJ/mol

3D Image of [FO]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [FO]+ (g)

The 10 contributors listed below account for 90.5% of the provenance of ΔfH° of [FO]+ (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
65.4638.1 FO (g) → [FO]+ (g) ΔrH°(0 K) = 12.77 ± 0.01 eVDyke 1980
7.2638.2 FO (g) → [FO]+ (g) ΔrH°(0 K) = 12.78 ± 0.03 eVZhang 1994
4.0638.10 FO (g) → [FO]+ (g) ΔrH°(0 K) = 12.766 ± 0.040 eVRuscic W1RO
2.6654.1 FOF (g) → [FO]+ (g) F (g) ΔrH°(0 K) = 14.438 ± 0.05 eVBerkowitz 1973a, est unc
2.5646.8 [FO]+ (g) H (g) → [OH]+ (g) F (g) ΔrH°(0 K) = -45.98 ± 1.2 kcal/molRuscic W1RO
2.1646.4 [FO]+ (g) H (g) → [OH]+ (g) F (g) ΔrH°(0 K) = -46.11 ± 1.3 kcal/molRuscic G4
1.6646.3 [FO]+ (g) H (g) → [OH]+ (g) F (g) ΔrH°(0 K) = -46.44 ± 1.4 (×1.067) kcal/molRuscic G3X
1.6640.9 [FO]+ (g) → F (g) O (g) ΔrH°(0 K) = -244.12 ± 1.50 kcal/molGrant 2011
1.6640.8 [FO]+ (g) → F (g) O (g) ΔrH°(0 K) = -244.08 ± 1.50 kcal/molRuscic W1RO
1.4640.4 [FO]+ (g) → F (g) O (g) ΔrH°(0 K) = -242.92 ± 1.60 kcal/molRuscic G4

Top 10 species with enthalpies of formation correlated to the ΔfH° of [FO]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
14.0 FluorooxidanylFO (g)[O]F110.28110.90± 0.14kJ/mol34.99780 ±
0.00030
12061-70-0*0
4.1 Oxygen difluorideFOF (g)FOF26.8024.55± 0.22kJ/mol53.99621 ±
0.00030
7783-41-7*0
4.1 DifluorodioxidaneFOOF (g)FOOF35.3831.65± 0.40kJ/mol69.99561 ±
0.00060
7783-44-0*0
3.1 Hypofluorite[FO]- (g)[O-]F-108.84-108.67± 0.48kJ/mol34.99835 ±
0.00030
12763-66-5*0
2.5 FluorodioxidanylFOO (g)FO[O]26.8725.16± 0.26kJ/mol50.99720 ±
0.00060
15499-23-7*0
2.3 Hypofluorous acidHOF (g)OF-84.38-87.28± 0.19kJ/mol36.00574 ±
0.00031
14034-79-8*0
1.9 Fluorine atomF (g)[F]77.25479.360± 0.017kJ/mol18.99840320 ±
0.00000050
14762-94-8*0
1.9 Fluorine atomF (g, 2P3/2)[F]77.25479.039± 0.017kJ/mol18.99840320 ±
0.00000050
14762-94-8*1
1.9 Fluorine atomF (g, 2P1/2)[F]82.08883.873± 0.017kJ/mol18.99840320 ±
0.00000050
14762-94-8*2
1.9 FluorideF- (g)[F-]-250.911-249.126± 0.017kJ/mol18.99895178 ±
0.00000050
16984-48-8*0

Most Influential reactions involving [FO]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.673638.1 FO (g) → [FO]+ (g) ΔrH°(0 K) = 12.77 ± 0.01 eVDyke 1980
0.074638.2 FO (g) → [FO]+ (g) ΔrH°(0 K) = 12.78 ± 0.03 eVZhang 1994
0.042638.10 FO (g) → [FO]+ (g) ΔrH°(0 K) = 12.766 ± 0.040 eVRuscic W1RO
0.028654.1 FOF (g) → [FO]+ (g) F (g) ΔrH°(0 K) = 14.438 ± 0.05 eVBerkowitz 1973a, est unc
0.025646.8 [FO]+ (g) H (g) → [OH]+ (g) F (g) ΔrH°(0 K) = -45.98 ± 1.2 kcal/molRuscic W1RO
0.021646.4 [FO]+ (g) H (g) → [OH]+ (g) F (g) ΔrH°(0 K) = -46.11 ± 1.3 kcal/molRuscic G4
0.016646.3 [FO]+ (g) H (g) → [OH]+ (g) F (g) ΔrH°(0 K) = -46.44 ± 1.4 (×1.067) kcal/molRuscic G3X
0.016640.9 [FO]+ (g) → F (g) O (g) ΔrH°(0 K) = -244.12 ± 1.50 kcal/molGrant 2011
0.016640.8 [FO]+ (g) → F (g) O (g) ΔrH°(0 K) = -244.08 ± 1.50 kcal/molRuscic W1RO
0.014646.6 [FO]+ (g) H (g) → [OH]+ (g) F (g) ΔrH°(0 K) = -45.16 ± 1.6 kcal/molRuscic CBS-n
0.014640.4 [FO]+ (g) → F (g) O (g) ΔrH°(0 K) = -242.92 ± 1.60 kcal/molRuscic G4
0.012638.6 FO (g) → [FO]+ (g) ΔrH°(0 K) = 12.750 ± 0.073 eVRuscic G4
0.012640.3 [FO]+ (g) → F (g) O (g) ΔrH°(0 K) = -242.67 ± 1.72 kcal/molRuscic G3X
0.011646.7 [FO]+ (g) H (g) → [OH]+ (g) F (g) ΔrH°(0 K) = -43.20 ± 1.3 (×1.354) kcal/molRuscic CBS-n
0.010638.9 FO (g) → [FO]+ (g) ΔrH°(0 K) = 12.692 ± 0.075 (×1.091) eVRuscic CBS-n
0.007638.5 FO (g) → [FO]+ (g) ΔrH°(0 K) = 12.738 ± 0.093 eVRuscic G3X
0.006638.8 FO (g) → [FO]+ (g) ΔrH°(0 K) = 12.803 ± 0.099 eVRuscic CBS-n
0.000642.1 [FO]+ (g) → F (g) O+ (g) ΔrH°(0 K) = 18532 ± 452 (×13.75) cm-1Johnson 1995, note unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.