Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Ethanethiol

Formula: CH3CH2SH (g)
CAS RN: 75-08-1
ATcT ID: 75-08-1*0
SMILES: CCS
InChI: InChI=1S/C2H6S/c1-2-3/h3H,2H2,1H3
Hills Formula: C2H6S1

2D Image:

CCS
Aliases: CH3CH2SH; Ethanethiol; Ethyl hydrosulfide; Ethyl mercaptan; Ethyl thioalcohol; Mercaptoethane; NSC 93877; Thioethanol; Thioethyl alcohol; InChiKey=DNJIEGIFACGWOD-UHFFFAOYSA-N
Relative Molecular Mass: 62.1350 ± 0.0062

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-28.74-45.57± 0.38kJ/mol

3D Image of CH3CH2SH (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH3CH2SH (g)

The 13 contributors listed below account for 90.2% of the provenance of ΔfH° of CH3CH2SH (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
49.39987.1 CH3CH2SH (cr,l) + 5 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) OS(O)(OH)2 (aq, 45 H2O) ΔrH°(298.15 K) = -519.12 ± 0.10 kcal/molMcCullough 1957a
15.59999.1 CH3SCH3 (cr,l) → CH3CH2SH (cr,l) ΔrH°(298.15 K) = -1.98 ± 0.13 kcal/molMcCullough 1957a
8.39988.1 CH3CH2SH (cr,l) → CH3CH2SH (g) ΔrH°(298.15 K) = 27.52 ± 0.12 kJ/molMajer 1985
5.69997.1 CH3SCH3 (cr,l) + 5 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) OS(O)(OH)2 (aq, 45 H2O) ΔrH°(298.15 K) = -521.10 ± 0.08 kcal/molMcCullough 1957a
3.29602.1 S (cr,l) O2 (g) → OSO (g) ΔrH°(298.15 K) = -296.847 ± 0.200 kJ/molEckman 1929, note SO2
2.39749.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.85 ± 0.06 kcal/molGood 1960, CODATA Key Vals
1.79749.2 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.92 ± 0.07 kcal/molMansson 1963, CODATA Key Vals
0.8125.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.79989.5 CH3CH2SH (g) → [CH3CH2]+ (g) SH (g) ΔrH°(0 K) = 11.280 ± 0.040 eVRuscic W1RO
0.79788.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 45 H2O) ΔrH°(298.15 K) = -143.67 ± 0.11 kcal/molMcCullough 1957a
0.69990.4 CH3CH2SH (g) CH3CH3 (g) → CH3SH (g) CH3CH2CH3 (g) ΔrH°(0 K) = 0.89 ± 0.85 kcal/molRuscic W1RO
0.69991.4 CH3CH2SH (g) CH3OH (g) → CH3SH (g) CH3CH2OH (g) ΔrH°(0 K) = -2.15 ± 0.85 kcal/molRuscic W1RO
0.59990.1 CH3CH2SH (g) CH3CH3 (g) → CH3SH (g) CH3CH2CH3 (g) ΔrH°(0 K) = 1.09 ± 0.90 kcal/molRuscic G3X

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3CH2SH (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
94.9 EthanethiolCH3CH2SH (cr,l)CCS-71.48-73.08± 0.37kJ/mol62.1350 ±
0.0062
75-08-1*500
64.5 Ethanethiol cation[CH3CH2SH]+ (g)CC[SH+]867.12850.96± 0.59kJ/mol62.1345 ±
0.0062
69762-64-7*0
40.7 Dimethyl sulfideCH3SCH3 (cr,l)CSC-63.11-64.71± 0.33kJ/mol62.1350 ±
0.0062
75-18-3*500
38.1 Dimethyl sulfideCH3SCH3 (g)CSC-20.22-36.74± 0.35kJ/mol62.1350 ±
0.0062
75-18-3*0
35.1 Sulfuric acid dihydrate(OS(O)(OH)2)(H2O)2 (cr,l)OS(=O)(=O)O.O.O-1422.14-1426.93± 0.14kJ/mol134.1100 ±
0.0063
13451-10-0*500
34.8 Sulfuric acid trihydrate(OS(O)(OH)2)(H2O)3 (cr,l)OS(=O)(=O)O.O.O.O-1716.08-1720.20± 0.15kJ/mol152.1253 ±
0.0064
40835-65-2*500
34.7 Sulfuric acid monohydrate(OS(O)(OH)2)(H2O) (cr,l)OS(=O)(=O)O.O-1126.32-1127.48± 0.13kJ/mol116.0948 ±
0.0062
10193-30-3*500
34.3 Sulfuric acidOS(O)(OH)2 (aq, 45 H2O)OS(=O)(=O)O-886.51± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*906
34.2 Sulfuric acidOS(O)(OH)2 (aq, 100 H2O)OS(=O)(=O)O-887.52± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*828
34.2 Sulfuric acidOS(O)(OH)2 (aq, 50 H2O)OS(=O)(=O)O-886.66± 0.13kJ/mol98.0795 ±
0.0061
7664-93-9*822

Most Influential reactions involving CH3CH2SH (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9909988.1 CH3CH2SH (cr,l) → CH3CH2SH (g) ΔrH°(298.15 K) = 27.52 ± 0.12 kJ/molMajer 1985
0.8699985.1 CH3CH2SH (g) → [CH3CH2SH]+ (g) ΔrH°(0 K) = 9.285 ± 0.005 eVWatanabe 1962
0.0549985.2 CH3CH2SH (g) → [CH3CH2SH]+ (g) ΔrH°(0 K) = 9.28 ± 0.02 eVTraeger 1984a, est unc
0.0549985.3 CH3CH2SH (g) → [CH3CH2SH]+ (g) ΔrH°(0 K) = 9.29 ± 0.02 eVOgata 1973, est unc
0.0259991.4 CH3CH2SH (g) CH3OH (g) → CH3SH (g) CH3CH2OH (g) ΔrH°(0 K) = -2.15 ± 0.85 kcal/molRuscic W1RO
0.0239990.4 CH3CH2SH (g) CH3CH3 (g) → CH3SH (g) CH3CH2CH3 (g) ΔrH°(0 K) = 0.89 ± 0.85 kcal/molRuscic W1RO
0.0229991.1 CH3CH2SH (g) CH3OH (g) → CH3SH (g) CH3CH2OH (g) ΔrH°(0 K) = -2.10 ± 0.90 kcal/molRuscic G3X
0.0229991.2 CH3CH2SH (g) CH3OH (g) → CH3SH (g) CH3CH2OH (g) ΔrH°(0 K) = -2.03 ± 0.90 kcal/molRuscic G4
0.0209990.2 CH3CH2SH (g) CH3CH3 (g) → CH3SH (g) CH3CH2CH3 (g) ΔrH°(0 K) = 0.97 ± 0.90 kcal/molRuscic G4
0.0209990.1 CH3CH2SH (g) CH3CH3 (g) → CH3SH (g) CH3CH2CH3 (g) ΔrH°(0 K) = 1.09 ± 0.90 kcal/molRuscic G3X
0.0189991.3 CH3CH2SH (g) CH3OH (g) → CH3SH (g) CH3CH2OH (g) ΔrH°(0 K) = -2.00 ± 1.00 kcal/molRuscic CBS-n
0.0169990.3 CH3CH2SH (g) CH3CH3 (g) → CH3SH (g) CH3CH2CH3 (g) ΔrH°(0 K) = 1.06 ± 1.00 kcal/molRuscic CBS-n
0.0159989.5 CH3CH2SH (g) → [CH3CH2]+ (g) SH (g) ΔrH°(0 K) = 11.280 ± 0.040 eVRuscic W1RO
0.0139985.7 CH3CH2SH (g) → [CH3CH2SH]+ (g) ΔrH°(0 K) = 9.286 ± 0.040 eVRuscic W1RO
0.0069995.4 CH3SCH3 (g) → CH3CH2SH (g) ΔrH°(0 K) = -2.04 ± 1.2 kcal/molRuscic W1RO
0.0059995.2 CH3SCH3 (g) → CH3CH2SH (g) ΔrH°(0 K) = -1.73 ± 1.3 kcal/molRuscic G4
0.0049995.1 CH3SCH3 (g) → CH3CH2SH (g) ΔrH°(0 K) = -2.07 ± 1.4 kcal/molRuscic G3X
0.0049989.3 CH3CH2SH (g) → [CH3CH2]+ (g) SH (g) ΔrH°(0 K) = 11.279 ± 0.073 eVRuscic G4
0.0049985.5 CH3CH2SH (g) → [CH3CH2SH]+ (g) ΔrH°(0 K) = 9.269 ± 0.073 eVRuscic G4
0.0039995.3 CH3SCH3 (g) → CH3CH2SH (g) ΔrH°(0 K) = -2.08 ± 1.6 kcal/molRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.