Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Acetic acid

Formula: CH3C(O)OH (aq, 0.5 H2O)
CAS RN: 64-19-7
ATcT ID: 64-19-7*923
SMILES: CC(=O)O
InChI: InChI=1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4)
InChIKey: QTBSBXVTEAMEQO-UHFFFAOYSA-N
Hills Formula: C2H4O2

2D Image:

CC(=O)O
Aliases: CH3C(O)OH; Acetic acid; Ethanoic acid; Ethylic acid; Glacial acetic acid; Methanecarboxylic acid; Vinegar acid; H3CC(O)OH; HOCOCH3; CH3COOH; HO(C=O)CH3; CH3(C=O)OH; UN 2789; UN 2790
Relative Molecular Mass: 60.0520 ± 0.0017

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-483.00± 0.33kJ/mol

Top contributors to the provenance of ΔfH° of CH3C(O)OH (aq, 0.5 H2O)

The 16 contributors listed below account for 90.4% of the provenance of ΔfH° of CH3C(O)OH (aq, 0.5 H2O).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
29.35118.1 CH3C(O)OH (aq, 100 H2O) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -0.42 ± 0.20 kJ/molNBS Tables 1989, NBS TN270, Parker 1965
11.05114.2 CH3C(O)OH (cr,l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -209.125 ± 0.054 kcal/molLebedeva 1964
9.75115.1 CH3C(O)OH (cr,l) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -0.360 ± 0.100 kcal/molParker 1965, NBS Tables 1989, est unc
4.85114.3 CH3C(O)OH (cr,l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -875.14 ± 0.34 kJ/molSteele 1997
4.35115.5 CH3C(O)OH (cr,l) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -0.364 ± 0.150 kcal/molThomsen 1882, Parker 1965, est unc
4.35115.7 CH3C(O)OH (cr,l) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -0.350 ± 0.150 kcal/molBerthelot 1875b, Parker 1965, est unc
4.35115.2 CH3C(O)OH (cr,l) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -0.361 ± 0.150 kcal/molPritchard 1950, Parker 1965, est unc
4.35115.3 CH3C(O)OH (cr,l) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -0.347 ± 0.150 kcal/molKlibanova 1933, Parker 1965, est unc
4.35115.4 CH3C(O)OH (cr,l) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -0.326 ± 0.150 kcal/molPickering 1895, Parker 1965, est unc
3.15114.1 CH3C(O)OH (cr,l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -874.54 ± 0.30 (×1.414) kJ/molEvans 1959
3.05115.6 CH3C(O)OH (cr,l) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -0.446 ± 0.180 kcal/molCarson 1949, Parker 1965, est unc
1.95215.7 CH3C(O)Cl (g) CH2O (g) → 2 CH3CHO (g) CCl2O (g) ΔrH°(0 K) = 10.13 ± 0.9 kcal/molRuscic W1RO
1.55215.4 CH3C(O)Cl (g) CH2O (g) → 2 CH3CHO (g) CCl2O (g) ΔrH°(0 K) = 9.60 ± 1.0 kcal/molRuscic G4
1.44363.1 CH2CO (g) [OH]- (aq) H+ (aq) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -49.79 ± 0.41 kcal/molNuttall 1971
1.35215.3 CH3C(O)Cl (g) CH2O (g) → 2 CH3CHO (g) CCl2O (g) ΔrH°(0 K) = 9.85 ± 1.1 kcal/molRuscic G3X
1.15214.8 CH3C(O)Cl (g) → CH3CO (g) Cl (g) ΔrH°(0 K) = 83.42 ± 0.6 kcal/molTang 2008, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3C(O)OH (aq, 0.5 H2O)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.9 Acetic acidCH3C(O)OH (aq, 100 H2O)CC(=O)O-484.65± 0.33kJ/mol60.0520 ±
0.0017
64-19-7*828
99.9 Acetic acidCH3C(O)OH (aq, 5000 H2O)CC(=O)O-484.69± 0.33kJ/mol60.0520 ±
0.0017
64-19-7*844
99.9 Acetic acidCH3C(O)OH (aq, 10 H2O)CC(=O)O-483.59± 0.33kJ/mol60.0520 ±
0.0017
64-19-7*815
99.9 Acetic acidCH3C(O)OH (aq, 50000 H2O)CC(=O)O-484.85± 0.33kJ/mol60.0520 ±
0.0017
64-19-7*855
99.9 Acetic acidCH3C(O)OH (aq, 20000 H2O)CC(=O)O-484.84± 0.33kJ/mol60.0520 ±
0.0017
64-19-7*852
99.9 Acetic acidCH3C(O)OH (aq, 10000 H2O)CC(=O)O-484.83± 0.33kJ/mol60.0520 ±
0.0017
64-19-7*850
99.9 Acetic acidCH3C(O)OH (aq, 500 H2O)CC(=O)O-484.78± 0.33kJ/mol60.0520 ±
0.0017
64-19-7*833
99.9 Acetic acidCH3C(O)OH (aq, 7 H2O)CC(=O)O-483.35± 0.33kJ/mol60.0520 ±
0.0017
64-19-7*812
99.9 Acetic acidCH3C(O)OH (aq, 75 H2O)CC(=O)O-484.60± 0.33kJ/mol60.0520 ±
0.0017
64-19-7*825
99.9 Acetic acidCH3C(O)OH (aq, 100000 H2O)CC(=O)O-484.86± 0.33kJ/mol60.0520 ±
0.0017
64-19-7*861

Most Influential reactions involving CH3C(O)OH (aq, 0.5 H2O)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0005119.1 CH3C(O)OH (aq, 0.5 H2O) → CH3C(O)OH (aq, 100 H2O) ΔrH°(298.15 K) = -1.649 ± 0.004 kJ/molNBS Tables 1989, NBS TN270, Parker 1965


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.