Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].
|
Acetic acid |
Formula: CH3C(O)OH (aq, undissoc) |
CAS RN: 64-19-7 |
ATcT ID: 64-19-7*1000 |
SMILES: CC(=O)O |
InChI: InChI=1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4) |
InChIKey: QTBSBXVTEAMEQO-UHFFFAOYSA-N |
Hills Formula: C2H4O2 |
2D Image: |
|
Aliases: CH3C(O)OH; Acetic acid; Ethanoic acid; Ethylic acid; Glacial acetic acid; Methanecarboxylic acid; Vinegar acid; H3CC(O)OH; HOCOCH3; CH3COOH; HO(C=O)CH3; CH3(C=O)OH; UN 2789; UN 2790 |
Relative Molecular Mass: 60.0520 ± 0.0017 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
| -484.78 | ± 0.27 | kJ/mol |
|
Top contributors to the provenance of ΔfH° of CH3C(O)OH (aq, undissoc)The 14 contributors listed below account for 90.1% of the provenance of ΔfH° of CH3C(O)OH (aq, undissoc).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 17.4 | 5114.2 | CH3C(O)OH (cr,l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -209.125 ± 0.054 kcal/mol | Lebedeva 1964 | 15.4 | 5115.1 | CH3C(O)OH (cr,l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.360 ± 0.100 kcal/mol | Parker 1965, NBS Tables 1989, est unc | 7.7 | 5114.3 | CH3C(O)OH (cr,l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -875.14 ± 0.34 kJ/mol | Steele 1997 | 6.8 | 5115.4 | CH3C(O)OH (cr,l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.326 ± 0.150 kcal/mol | Pickering 1895, Parker 1965, est unc | 6.8 | 5115.5 | CH3C(O)OH (cr,l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.364 ± 0.150 kcal/mol | Thomsen 1882, Parker 1965, est unc | 6.8 | 5115.7 | CH3C(O)OH (cr,l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.350 ± 0.150 kcal/mol | Berthelot 1875b, Parker 1965, est unc | 6.8 | 5115.2 | CH3C(O)OH (cr,l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.361 ± 0.150 kcal/mol | Pritchard 1950, Parker 1965, est unc | 6.8 | 5115.3 | CH3C(O)OH (cr,l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.347 ± 0.150 kcal/mol | Klibanova 1933, Parker 1965, est unc | 4.9 | 5114.1 | CH3C(O)OH (cr,l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -874.54 ± 0.30 (×1.414) kJ/mol | Evans 1959 | 4.7 | 5115.6 | CH3C(O)OH (cr,l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.446 ± 0.180 kcal/mol | Carson 1949, Parker 1965, est unc | 2.2 | 4363.1 | CH2CO (g) + [OH]- (aq) + H+ (aq) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -49.79 ± 0.41 kcal/mol | Nuttall 1971 | 1.2 | 5215.7 | 2 CH3C(O)Cl (g) + CH2O (g) → 2 CH3CHO (g) + CCl2O (g)  | ΔrH°(0 K) = 10.13 ± 0.9 kcal/mol | Ruscic W1RO | 0.9 | 5215.4 | 2 CH3C(O)Cl (g) + CH2O (g) → 2 CH3CHO (g) + CCl2O (g)  | ΔrH°(0 K) = 9.60 ± 1.0 kcal/mol | Ruscic G4 | 0.8 | 5215.3 | 2 CH3C(O)Cl (g) + CH2O (g) → 2 CH3CHO (g) + CCl2O (g)  | ΔrH°(0 K) = 9.85 ± 1.1 kcal/mol | Ruscic G3X |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3C(O)OH (aq, undissoc) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.9 | Acetic acid | CH3C(O)OH (aq) | | | -485.09 | ± 0.27 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*800 | 99.9 | Acetate | [CH3C(O)O]- (aq) | | | -485.09 | ± 0.27 | kJ/mol | 59.0446 ± 0.0017 | 71-50-1*800 | 79.5 | Acetic acid | CH3C(O)OH (aq, 100 H2O) | | | -484.65 | ± 0.33 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*828 | 79.5 | Acetic acid | CH3C(O)OH (aq, 5000 H2O) | | | -484.69 | ± 0.33 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*844 | 79.5 | Acetic acid | CH3C(O)OH (aq, 9 H2O) | | | -483.51 | ± 0.33 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*814 | 79.5 | Acetic acid | CH3C(O)OH (aq, 500 H2O) | | | -484.78 | ± 0.33 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*833 | 79.5 | Acetic acid | CH3C(O)OH (aq, 8 H2O) | | | -483.43 | ± 0.33 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*813 | 79.5 | Acetic acid | CH3C(O)OH (aq, 7 H2O) | | | -483.35 | ± 0.33 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*812 | 79.5 | Acetic acid | CH3C(O)OH (aq, 75 H2O) | | | -484.60 | ± 0.33 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*825 | 79.5 | Acetic acid | CH3C(O)OH (aq, 10000 H2O) | | | -484.83 | ± 0.33 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*850 |
|
Most Influential reactions involving CH3C(O)OH (aq, undissoc)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.985 | 5117.4 | CH3C(O)OH (aq, undissoc) → CH3C(O)OH (aq)  | ΔrG°(298.15 K) = 27.147 ± 0.010 kJ/mol | Harned 1932, 3rd Law, est unc | 0.011 | 5117.2 | CH3C(O)OH (aq, undissoc) → CH3C(O)OH (aq)  | ΔrG°(298.15 K) = 27.238 ± 0.010 (×9.11) kJ/mol | Kinart 2019, 3rd Law, est unc | 0.000 | 5117.8 | CH3C(O)OH (aq, undissoc) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.25 ± 0.40 kJ/mol | NBS Tables 1989, Parker 1965 | 0.000 | 5117.9 | CH3C(O)OH (aq, undissoc) → CH3C(O)OH (aq)  | ΔrG°(298.15 K) = 27.15 ± 0.40 kJ/mol | NBS Tables 1989, Parker 1965 | 0.000 | 5117.7 | CH3C(O)OH (aq, undissoc) → CH3C(O)OH (aq)  | ΔrG°(298.15 K) = 27.13 ± 0.50 kJ/mol | Ellis 1963a, 3rd Law, est unc | 0.000 | 5117.6 | CH3C(O)OH (aq, undissoc) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = 0.06 ± 0.50 kJ/mol | Ellis 1963a, 2nd Law, est unc | 0.000 | 5117.3 | CH3C(O)OH (aq, undissoc) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = 0.20 ± 0.50 (×1.044) kJ/mol | Harned 1932, 2nd Law, est unc | 0.000 | 5117.5 | CH3C(O)OH (aq, undissoc) → CH3C(O)OH (aq)  | ΔrG°(298.15 K) = 27.23 ± 0.60 kJ/mol | Wilsdon 1913, Kinart 2019, est unc | 0.000 | 5117.1 | CH3C(O)OH (aq, undissoc) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -2.66 ± 0.50 (×4.757) kJ/mol | Kinart 2019, 2nd Law, est unc |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024)
[DOI: 10.1039/D4FD00110A]
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|