Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].
|
Sulfur tetraoxide |
Formula: OS(O)(O)O (g, triplet Td) |
CAS RN: 12772-98-4 |
ATcT ID: 12772-98-4*12 |
SMILES: [O]S(=O)(=O)[O] |
InChI: InChI=1S/O4S/c1-5(2,3)4 |
InChIKey: DRQBAJRMFBIZMF-UHFFFAOYSA-N |
Hills Formula: O4S1 |
2D Image: |
|
Aliases: OS(O)(O)O; Sulfur tetraoxide; Sulfur peroxide; Sulfur tetroxide; SO4; 2082745-60-4 |
Relative Molecular Mass: 96.0636 ± 0.0061 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
-205.2 | -211.3 | ± 2.6 | kJ/mol |
|
3D Image of OS(O)(O)O (g, triplet Td) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of OS(O)(O)O (g, triplet Td)The 20 contributors listed below account only for 82.4% of the provenance of ΔfH° of OS(O)(O)O (g, triplet Td). A total of 27 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 9.9 | 9927.4 | OS(O)(O)O (g, triplet D2d) → OS(O)(O)O (g, triplet Td)  | ΔrH°(0 K) = 1978 ± 300 cm-1 | Ruscic W1RO | 9.2 | 9927.2 | OS(O)(O)O (g, triplet D2d) → OS(O)(O)O (g, triplet Td)  | ΔrH°(0 K) = 1825 ± 310 cm-1 | Ruscic G4 | 8.9 | 9927.1 | OS(O)(O)O (g, triplet D2d) → OS(O)(O)O (g, triplet Td)  | ΔrH°(0 K) = 1674 ± 315 cm-1 | Ruscic G3X | 7.2 | 9927.3 | OS(O)(O)O (g, triplet D2d) → OS(O)(O)O (g, triplet Td)  | ΔrH°(0 K) = 2165 ± 350 cm-1 | Ruscic CBS-n | 4.8 | 9928.4 | OS(O)(O)O (g, triplet Td) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 3646 ± 420 cm-1 | Ruscic W1RO | 4.8 | 9930.4 | OS(O)(O)O (g, triplet D2d) → OSO (g) + O2 (g, triplet)  | ΔrH°(0 K) = -15.84 ± 1.50 kcal/mol | Ruscic W1RO | 4.5 | 9926.3 | OS(OO)O (g, singlet C2v) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 7927 ± 350 (×1.022) cm-1 | Ruscic CBS-n | 4.2 | 9930.2 | OS(O)(O)O (g, triplet D2d) → OSO (g) + O2 (g, triplet)  | ΔrH°(0 K) = -15.19 ± 1.60 kcal/mol | Ruscic G4 | 3.6 | 9930.1 | OS(O)(O)O (g, triplet D2d) → OSO (g) + O2 (g, triplet)  | ΔrH°(0 K) = -15.87 ± 1.72 kcal/mol | Ruscic G3X | 3.1 | 9925.4 | OS(OO)O (g, singlet C2v) → OS(O)(O)O (g, triplet D2d)  | ΔrH°(0 K) = 2546 ± 420 cm-1 | Ruscic W1RO | 2.7 | 9925.2 | OS(OO)O (g, singlet C2v) → OS(O)(O)O (g, triplet D2d)  | ΔrH°(0 K) = 2216 ± 450 cm-1 | Ruscic G4 | 2.7 | 9928.3 | OS(O)(O)O (g, triplet Td) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 3414 ± 560 cm-1 | Ruscic CBS-n | 2.5 | 9926.4 | OS(OO)O (g, singlet C2v) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 8169 ± 300 (×1.61) cm-1 | Ruscic W1RO | 2.3 | 9930.3 | OS(O)(O)O (g, triplet D2d) → OSO (g) + O2 (g, triplet)  | ΔrH°(0 K) = -16.66 ± 2.16 kcal/mol | Ruscic CBS-n | 2.3 | 9925.1 | OS(OO)O (g, singlet C2v) → OS(O)(O)O (g, triplet D2d)  | ΔrH°(0 K) = 2155 ± 490 cm-1 | Ruscic G3X | 2.2 | 9941.4 | (O2S)(OO) (g, triplet C1) → OS(O)(O)O (g, triplet D2d)  | ΔrH°(0 K) = 16.27 ± 1.2 kcal/mol | Ruscic W1RO | 1.8 | 9941.2 | (O2S)(OO) (g, triplet C1) → OS(O)(O)O (g, triplet D2d)  | ΔrH°(0 K) = 15.11 ± 1.3 kcal/mol | Ruscic G4 | 1.7 | 9925.3 | OS(OO)O (g, singlet C2v) → OS(O)(O)O (g, triplet D2d)  | ΔrH°(0 K) = 2348 ± 560 cm-1 | Ruscic CBS-n | 1.7 | 9910.4 | OS(OO)O (g, singlet C2v) + OSO (g) → 2 OS(O)O (g)  | ΔrH°(0 K) = -54.57 ± 0.85 kcal/mol | Ruscic W1RO | 1.6 | 9941.1 | (O2S)(OO) (g, triplet C1) → OS(O)(O)O (g, triplet D2d)  | ΔrH°(0 K) = 16.73 ± 1.4 kcal/mol | Ruscic G3X |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of OS(O)(O)O (g, triplet Td) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 70.6 | Sulfur tetraoxide | OS(O)(O)O (g, triplet D2d) | | -228.2 | -235.1 | ± 2.0 | kJ/mol | 96.0636 ± 0.0061 | 12772-98-4*11 | 70.6 | Sulfur tetraoxide | OS(O)(O)O (g) | | -228.2 | -235.1 | ± 2.0 | kJ/mol | 96.0636 ± 0.0061 | 12772-98-4*0 | 70.6 | Sulfur tetraoxide | OS(O)(O)O (g, triplet) | | -228.2 | -235.1 | ± 2.0 | kJ/mol | 96.0636 ± 0.0061 | 12772-98-4*1 | 48.5 | Sulfur tetraoxide | OS(O)(O)O (g, singlet Td) | | -163.8 | -169.6 | ± 2.9 | kJ/mol | 96.0636 ± 0.0061 | 12772-98-4*22 | 48.5 | Sulfur tetraoxide | OS(O)(O)O (g, singlet) | | -163.8 | -169.5 | ± 2.9 | kJ/mol | 96.0636 ± 0.0061 | 12772-98-4*2 | 35.3 | Sulfur tetraoxide | OS(O)(O)O (g, singlet C3v ?) | | -155.5 | -164.4 | ± 4.0 | kJ/mol | 96.0636 ± 0.0061 | 12772-98-4*23 | 35.2 | 3,3-Dioxidedioxathiirane | OS(OO)O (g, singlet C2v) | | -257.1 | -265.2 | ± 1.4 | kJ/mol | 96.0636 ± 0.0061 | 1177730-84-5*2 | 35.2 | 3,3-Dioxidedioxathiirane | OS(OO)O (g) | | -257.1 | -265.2 | ± 1.4 | kJ/mol | 96.0636 ± 0.0061 | 1177730-84-5*0 | 31.7 | Dioxoperoxysulfane | (O2S)(OO) (g, triplet C1) | | -296.1 | -296.1 | ± 2.0 | kJ/mol | 96.0636 ± 0.0061 | *103613-08-7*21 | 21.9 | Dioxoperoxysulfane | (O2S)(OO) (g, singlet C1) | | -176.7 | -177.7 | ± 2.1 | kJ/mol | 96.0636 ± 0.0061 | *103613-08-7*11 |
|
Most Influential reactions involving OS(O)(O)O (g, triplet Td)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.303 | 9928.4 | OS(O)(O)O (g, triplet Td) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 3646 ± 420 cm-1 | Ruscic W1RO | 0.247 | 9927.4 | OS(O)(O)O (g, triplet D2d) → OS(O)(O)O (g, triplet Td)  | ΔrH°(0 K) = 1978 ± 300 cm-1 | Ruscic W1RO | 0.231 | 9927.2 | OS(O)(O)O (g, triplet D2d) → OS(O)(O)O (g, triplet Td)  | ΔrH°(0 K) = 1825 ± 310 cm-1 | Ruscic G4 | 0.224 | 9927.1 | OS(O)(O)O (g, triplet D2d) → OS(O)(O)O (g, triplet Td)  | ΔrH°(0 K) = 1674 ± 315 cm-1 | Ruscic G3X | 0.181 | 9927.3 | OS(O)(O)O (g, triplet D2d) → OS(O)(O)O (g, triplet Td)  | ΔrH°(0 K) = 2165 ± 350 cm-1 | Ruscic CBS-n | 0.170 | 9928.3 | OS(O)(O)O (g, triplet Td) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 3414 ± 560 cm-1 | Ruscic CBS-n | 0.060 | 9928.2 | OS(O)(O)O (g, triplet Td) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 2520 ± 450 (×2.089) cm-1 | Ruscic G4 | 0.051 | 9928.1 | OS(O)(O)O (g, triplet Td) → OS(O)(O)O (g, singlet Td)  | ΔrH°(0 K) = 2443 ± 490 (×2.089) cm-1 | Ruscic G3X |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024)
[DOI: 10.1039/D4FD00110A]
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|