Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Ethylene glycol

Formula: (CH2OH)2 (cr,l)
CAS RN: 107-21-1
ATcT ID: 107-21-1*500
SMILES: OCCO
InChI: InChI=1S/C2H6O2/c3-1-2-4/h3-4H,1-2H2
InChIKey: LYCAIKOWRPUZTN-UHFFFAOYSA-N
Hills Formula: C2H6O2

2D Image:

OCCO
Aliases: (CH2OH)2; Ethylene glycol; Ethyleneglycol; 1,2-Ethanediol; Glycol; Dihydroxyethane; 1,2-Dihydroxyethane; 1,2-Ethylene glycol; 146AR; 2-Hydroxyethanol; Dowtherm SR 1; E 600; Ethylene alcohol; Ethylene dihydrate; Fridex; Glycol alcohol; Glysil GS; MEG 100; Macrogol 400 BPC; Monoethylene glycol; NSC 93876; Norkool; Ramp; Tescol; Ucar 17; Union Carbide XL 54 Type I De-icing Fluid; Zerex; CH2(OH)CH2OH; HOCH2CH2OH; HO(CH2)2OH
Relative Molecular Mass: 62.0678 ± 0.0018

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-448.63-455.15± 0.37kJ/mol

Top contributors to the provenance of ΔfH° of (CH2OH)2 (cr,l)

The 6 contributors listed below account for 90.3% of the provenance of ΔfH° of (CH2OH)2 (cr,l).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
35.85388.3 (CH2OH)2 (cr,l) + 5/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -284.32 ± 0.14 kcal/molParks 1946
27.45388.4 (CH2OH)2 (cr,l) + 5/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -284.14 ± 0.16 kcal/molGardner 1972
17.55388.5 (CH2OH)2 (cr,l) + 5/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -284.1 ± 0.2 kcal/molMcClaine 1948, as quoted by NIST WebBook
7.85388.6 (CH2OH)2 (cr,l) + 5/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -284.47 ± 0.3 kcal/molParks 1952, est unc
0.8125.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.75386.6 (CH2OH)2 (g) + 2 CH4 (g) → 2 CH3OH (g) CH3CH3 (g) ΔrH°(0 K) = 12.57 ± 0.9 kcal/molRuscic W1RO

Top 10 species with enthalpies of formation correlated to the ΔfH° of (CH2OH)2 (cr,l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
91.5 Ethylene glycol(CH2OH)2 (g)OCCO-369.65-389.27± 0.40kJ/mol62.0678 ±
0.0018
107-21-1*0
17.1 WaterH2O (g, ortho)O-238.618-241.806± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*1
17.1 WaterH2O (g, para)O-238.903-241.806± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*2
17.1 WaterH2O (g)O-238.903-241.806± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*0
17.1 WaterH2O (cr, l, eq.press.)O-286.275-285.802± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*499
17.1 WaterH2O (l, eq.press.)O-285.802± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*589
17.1 Oxonium[H3O]+ (aq)[OH3+]-285.801± 0.022kJ/mol19.02267 ±
0.00037
13968-08-6*800
17.1 WaterH2O (l)O-285.801± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*590
17.1 WaterH2O (cr,l)O-286.273-285.801± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*500
17.1 WaterH2O (cr)O-286.273-292.713± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*510

Most Influential reactions involving (CH2OH)2 (cr,l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.6235387.1 (CH2OH)2 (cr,l) → (CH2OH)2 (g) ΔrH°(298.15 K) = 66.0 ± 0.2 kJ/molVerevkin 2004
0.3725388.3 (CH2OH)2 (cr,l) + 5/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -284.32 ± 0.14 kcal/molParks 1946
0.2845388.4 (CH2OH)2 (cr,l) + 5/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -284.14 ± 0.16 kcal/molGardner 1972
0.1825388.5 (CH2OH)2 (cr,l) + 5/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -284.1 ± 0.2 kcal/molMcClaine 1948, as quoted by NIST WebBook
0.1565387.9 (CH2OH)2 (cr,l) → (CH2OH)2 (g) ΔrH°(450 K) = 54.36 ± 0.40 kJ/molThermoData 2004
0.1075387.2 (CH2OH)2 (cr,l) → (CH2OH)2 (g) ΔrH°(298.15 K) = 65.40 ± 0.32 (×1.509) kJ/molVasiltsova 2005, as quoted by NIST WebBook
0.0815388.6 (CH2OH)2 (cr,l) + 5/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -284.47 ± 0.3 kcal/molParks 1952, est unc
0.0695387.7 (CH2OH)2 (cr,l) → (CH2OH)2 (g) ΔrH°(298.15 K) = 65.6 ± 0.6 kJ/molKnauth 1989, note unc
0.0135387.4 (CH2OH)2 (cr,l) → (CH2OH)2 (g) ΔrH°(439 K) = 13.39 ± 0.32 kcal/molGardner 1972, 2nd Law
0.0055387.5 (CH2OH)2 (cr,l) → (CH2OH)2 (g) ΔrH°(383 K) = 14.6 ± 0.5 kcal/molSchierholtz 1935, 2nd Law, est unc
0.0055387.3 (CH2OH)2 (cr,l) → (CH2OH)2 (g) ΔrH°(396 K) = 13.6 ± 0.5 kcal/molGallaugher 1937, 2nd Law
0.0055387.6 (CH2OH)2 (cr,l) → (CH2OH)2 (g) ΔrH°(437 K) = 13.7 ± 0.5 kcal/molSchierholtz 1935, 2nd Law, est unc
0.0055388.1 (CH2OH)2 (cr,l) + 5/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(290.15 K) = -285.55 ± 0.28 (×4.269) kcal/molMoureu 1937, mw conversion
0.0045388.7 (CH2OH)2 (cr,l) + 5/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -1184.6 ± 5.6 kJ/molKnauth 1990, Knauth 1989, note unc
0.0005388.2 (CH2OH)2 (cr,l) + 5/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -287.65 ± 0.19 (×18.22) kcal/molJung 1942, mw conversion


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.