Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].
|
Hydrogen chloride |
Formula: HCl (aq, 600 H2O) |
CAS RN: 7647-01-0 |
ATcT ID: 7647-01-0*834 |
SMILES: Cl |
InChI: InChI=1S/ClH/h1H |
InChIKey: VEXZGXHMUGYJMC-UHFFFAOYSA-N |
Hills Formula: Cl1H1 |
2D Image: |
|
Aliases: HCl; Hydrogen chloride; Hydrogen monochloride; Hydrochloric acid; Chlorhydric acid; Chlorohydric acid; Chlorohydrogen; Chloric acid; Chlorine hydride; Chlorine monohydride |
Relative Molecular Mass: 36.46064 ± 0.00090 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
| -166.450 | ± 0.023 | kJ/mol |
|
Top contributors to the provenance of ΔfH° of HCl (aq, 600 H2O)The 8 contributors listed below account for 90.6% of the provenance of ΔfH° of HCl (aq, 600 H2O).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 23.3 | 801.1 | HCl (g) → HCl (aq)  | ΔrH°(298.15 K) = -17.884 ± 0.010 kcal/mol | Gunn 1963, Gunn 1964, as quoted by CODATA Key Vals, Vanderzee 1963, NBS Tables 1989 | 16.3 | 803.1 | HCl (g) → HCl (aq, 2439 H2O)  | ΔrH°(298.15 K) = -17.810 ± 0.012 kcal/mol | Vanderzee 1963 | 16.3 | 801.4 | HCl (g) → HCl (aq)  | ΔrG°(298.15 K) = -36.009 ± 0.050 kJ/mol | Aston 1955, as quoted by CODATA Key Vals | 16.3 | 801.5 | HCl (g) → HCl (aq)  | ΔrG°(298.15 K) = -36.015 ± 0.050 kJ/mol | Bates 1919, as quoted by CODATA Key Vals | 6.3 | 801.3 | HCl (g) → HCl (aq)  | ΔrG°(298.15 K) = -35.960 ± 0.080 kJ/mol | Haase 1963, as quoted by CODATA Key Vals | 6.3 | 800.1 | 1/2 H2 (g) + 1/2 Cl2 (g) → HCl (aq)  | ΔrG°(298.15 K) = -31.320 ± 0.020 (×1.022) kcal/mol | Cerquetti 1968 | 3.0 | 823.1 | HCl (aq, 100 H2O) → HCl (aq, 600 H2O)  | ΔrH°(298.15 K) = -0.694 ± 0.004 kJ/mol | NBS Tables 1989, NBS TN270, Parker 1965 | 2.3 | 788.1 | HCl (g) → H+ (g) + Cl- (g)  | ΔrH°(0 K) = 116289.0 ± 0.6 cm-1 | Martin 1998, note HCl |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of HCl (aq, 600 H2O) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 98.4 | Hydrogen chloride | HCl (aq, 100 H2O) | | | -165.756 | ± 0.023 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*828 | 97.1 | Hydrogen chloride | HCl (aq) | | | -166.990 | ± 0.023 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*800 | 97.1 | Chloride | Cl- (aq) | | | -166.990 | ± 0.023 | kJ/mol | 35.45325 ± 0.00090 | 16887-00-6*800 | 96.9 | Hydrogen chloride | HCl (aq, 800 H2O) | | | -166.517 | ± 0.023 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*837 | 96.9 | Hydrogen chloride | HCl (aq, 20 H2O) | | | -163.676 | ± 0.023 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*818 | 96.9 | Hydrogen chloride | HCl (aq, 200 H2O) | | | -166.103 | ± 0.023 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*830 | 96.9 | Hydrogen chloride | HCl (aq, 3000 H2O) | | | -166.739 | ± 0.023 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*842 | 96.9 | Hydrogen chloride | HCl (aq, 75 H2O) | | | -165.555 | ± 0.023 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*825 | 96.9 | Hydrogen chloride | HCl (aq, 1500 H2O) | | | -166.635 | ± 0.023 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*840 | 96.9 | Hydrogen chloride | HCl (aq, 150 H2O) | | | -165.978 | ± 0.023 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*829 |
|
Most Influential reactions involving HCl (aq, 600 H2O)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 1.000 | 6225.1 | CH2CHCl (s, poly) + 5/2 O2 (g) → 2 CO2 (g) + H2O (cr,l) + HCl (aq, 600 H2O)  | ΔrH°(298.15 K) = -273.72 ± 0.3 kcal/mol | Sinke 1958, Manion 2002, note unc3 | 0.999 | 823.1 | HCl (aq, 100 H2O) → HCl (aq, 600 H2O)  | ΔrH°(298.15 K) = -0.694 ± 0.004 kJ/mol | NBS Tables 1989, NBS TN270, Parker 1965 | 0.765 | 6874.1 | ClCH2CH2OH (l) + 5/2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) + HCl (aq, 600 H2O)  | ΔrH°(298.15 K) = -1209.83 ± 0.6 kJ/mol | Bernardes 2007 | 0.728 | 6186.1 | CH2ClCCl3 (cr,l) + H2O (cr,l) + 3/2 O2 (g) → 2 CO2 (g) + 4 HCl (aq, 600 H2O)  | ΔrH°(298.15 K) = -973.89 ± 1.28 kJ/mol | Gundry 1978 | 0.280 | 7376.2 | C6H5Cl (cr,l) + 7 O2 (g) → 6 CO2 (g) + HCl (aq, 600 H2O) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -743.47 ± 0.26 kcal/mol | Kolesov 1967 | 0.229 | 6222.1 | CH2CHCl (cr,l) + 5/2 O2 (g) → 2 CO2 (g) + H2O (cr,l) + HCl (aq, 600 H2O)  | ΔrH°(298.15 K) = -1241.1 ± 1.9 kJ/mol | Joshi 1964, Sinke 1958, Manion 2002 | 0.225 | 6170.2 | CH3CCl3 (l) + 2 O2 (g) → 2 CO2 (g) + 3 HCl (aq, 600 H2O)  | ΔrH°(298.15 K) = -264.83 ± 0.19 (×1.384) kcal/mol | Hu 1972 | 0.165 | 6145.1 | CH3CH2Cl (g) + 3 O2 (g) → 2 CO2 (g) + HCl (aq, 600 H2O) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -1413.04 ± 0.59 kJ/mol | Fletcher 1971 | 0.162 | 6240.2 | CH2CCl2 (l) + 2 O2 (g) → 2 CO2 (g) + 2 HCl (aq, 600 H2O)  | ΔrH°(298.15 K) = -261.90 ± 0.30 kcal/mol | Sinke 1958, Cox 1970, Manion 2002 | 0.134 | 6240.1 | CH2CCl2 (l) + 2 O2 (g) → 2 CO2 (g) + 2 HCl (aq, 600 H2O)  | ΔrH°(298.15 K) = -1095.94 ± 1.38 kJ/mol | Mansson 1971 | 0.126 | 6244.1 | CHClCCl2 (l) + H2O (cr,l) + 3/2 O2 (g) → 2 CO2 (g) + 3 HCl (aq, 600 H2O)  | ΔrH°(298.15 K) = -947.7 ± 2.9 (×1.414) kJ/mol | Papina 1985, Manion 2002 | 0.109 | 6155.3 | CH2ClCH2Cl (cr,l) + 5/2 O2 (g) → 2 CO2 (g) + 2 HCl (aq, 600 H2O) + H2O (cr,l)  | ΔrH°(298.15 K) = -296.62 ± 0.40 kcal/mol | Sinke 1958 | 0.062 | 6175.1 | CH2ClCHCl2 (l) + 2 O2 (g) → 2 CO2 (g) + 3 HCl (aq, 600 H2O)  | ΔrH°(298.15 K) = -1098.1 ± 4.4 kJ/mol | Leach 2015, Manion 2002 | 0.061 | 7376.3 | C6H5Cl (cr,l) + 7 O2 (g) → 6 CO2 (g) + HCl (aq, 600 H2O) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -3112.60 ± 0.90 (×2.594) kJ/mol | Platonov 1985 | 0.043 | 6200.1 | CCl3CCl3 (cr,l) + 3 H2O (cr,l) + 1/2 O2 (g) → 2 CO2 (g) + 6 HCl (aq, 600 H2O)  | ΔrH°(298.15 K) = -173.86 ± 2.00 (×1.61) kcal/mol | Smith 1953, Eftring 1938 | 0.037 | 6315.1 | CH3Cl (g) + 3/2 O2 (g) → CO2 (g) + H2O (cr,l) + HCl (aq, 600 H2O)  | ΔrH°(298.15 K) = -764.00 ± 0.50 (×1.719) kJ/mol | Fletcher 1971 | 0.030 | 6170.3 | CH3CCl3 (l) + 2 O2 (g) → 2 CO2 (g) + 3 HCl (aq, 600 H2O)  | ΔrH°(298.15 K) = -1112.09 ± 1.28 (×2.327) kJ/mol | Mansson 1971 | 0.030 | 6244.2 | CHClCCl2 (l) + H2O (cr,l) + 3/2 O2 (g) → 2 CO2 (g) + 3 HCl (aq, 600 H2O)  | ΔrH°(298.15 K) = -228.60 ± 2.0 kcal/mol | Smith 1953, Eftring 1938, Manion 2002, Cox 1970 | 0.029 | 6181.1 | CHCl2CHCl2 (cr,l) + H2O (cr,l) + 3/2 O2 (g) → 2 CO2 (g) + 4 HCl (aq, 600 H2O)  | ΔrH°(298.15 K) = -232.5 ± 2.0 kcal/mol | Smith 1953, Eftring 1938, as quoted by Cox 1970 | 0.022 | 6195.1 | CHCl2CCl3 (cr,l) + 2 H2O (cr,l) + O2 (g) → 2 CO2 (g) + 5 HCl (aq, 600 H2O)  | ΔrH°(298.15 K) = -205.9 ± 2.00 (×1.915) kcal/mol | Smith 1953, Eftring 1938 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024)
[DOI: 10.1039/D4FD00110A]
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|