Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Helium cation

Formula: He+ (g)
CAS RN: 14234-48-1
ATcT ID: 14234-48-1*0
SMILES: [He+]
InChI: InChI=1S/He/q+1
InChIKey: QLNXTEZOQCZJBA-UHFFFAOYSA-N
Hills Formula: He1+

2D Image:

[He+]
Aliases: He+; Helium cation; Helium ion (1+); Helium atom cation; Helium atom ion (1+); Atomic helium cation; Atomic helium ion (1+)
Relative Molecular Mass: 4.0020534 ± 0.0000020

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
2372.3222372.322± 0.000kJ/mol

3D Image of He+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of He+ (g)

The 3 contributors listed below account for 93.6% of the provenance of ΔfH° of He+ (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
75.59483.1 He (g) → He+ (g) ΔrH°(0 K) = 198310.66637 ± 0.00040 cm-1Kandula 2010, note unc, Tiesinga 2021
9.69483.10 He (g) → He+ (g) ΔrH°(0 K) = 198310.6667 ± 0.0028 cm-1Korobov 2001, note unc
8.39483.2 He (g) → He+ (g) ΔrH°(0 K) = 198310.6672 ± 0.0030 cm-1Eikema 1997, note unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of He+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
77.6 Helium dication[He]+2 (g)[He++]7622.8397622.839± 0.000kJ/mol4.0015048 ±
0.0000020
12587-46-1*0

Most Influential reactions involving He+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.7559483.1 He (g) → He+ (g) ΔrH°(0 K) = 198310.66637 ± 0.00040 cm-1Kandula 2010, note unc, Tiesinga 2021
0.4999501.14 [He2]+ (g) → He (g) He+ (g) ΔrH°(0 K) = 19116.128 ± 2 cm-1Cencek 2000, Tung 2012, est unc
0.4999501.13 [He2]+ (g) → He (g) He+ (g) ΔrH°(0 K) = 19116.116 ± 2 cm-1Tung 2012, est unc
0.4979484.7 He+ (g) → [He]+2 (g) ΔrH°(0 K) = 438908.8785 ± 0.0004 cm-1Johnson 1985, note std dev, Tiesinga 2021
0.4979484.5 He+ (g) → [He]+2 (g) ΔrH°(0 K) = 438908.8782 ± 0.0002 cm-1Erickson 1977, note std dev
0.0969483.10 He (g) → He+ (g) ΔrH°(0 K) = 198310.6667 ± 0.0028 cm-1Korobov 2001, note unc
0.0849483.2 He (g) → He+ (g) ΔrH°(0 K) = 198310.6672 ± 0.0030 cm-1Eikema 1997, note unc
0.0359483.3 He (g) → He+ (g) ΔrH°(0 K) = 198310.6712 ± 0.0032 (×1.445) cm-1Bergeson 1998, note unc
0.0219483.11 He (g) → He+ (g) ΔrH°(0 K) = 198310.6668 ± 0.0060 cm-1Drake 1998, note unc
0.0059483.12 He (g) → He+ (g) ΔrH°(0 K) = 198310.655 ± 0.01 (×1.164) cm-1Drake 1988, est unc
0.0059484.3 He+ (g) → [He]+2 (g) ΔrH°(0 K) = 438908.877 ± 0.010 cm-1Garcia 1965
0.0019483.9 He (g) → He+ (g) ΔrH°(0 K) = 198310.674 ± 0.025 cm-1Dalgarno 1960
0.0009483.7 He (g) → He+ (g) ΔrH°(0 K) = 198310.687 ± 0.05 cm-1Pekeris 1959, est unc
0.0009483.8 He (g) → He+ (g) ΔrH°(0 K) = 198310.67 ± 0.05 cm-1Pekeris 1958, est unc
0.0009483.5 He (g) → He+ (g) ΔrH°(0 K) = 198310.76 ± 0.02 (×4.757) cm-1Seaton 1966a, note unc
0.0009501.8 [He2]+ (g) → He (g) He+ (g) ΔrH°(0 K) = 54.44 ± 0.50 kcal/molGurtubay 2006, Huber 1979, est unc
0.0009482.1 He (g, triplet) → He+ (g) ΔrH°(0 K) = 38454.8274 ± 0.2 cm-1Accad 1971, est unc
0.0009483.4 He (g) → He+ (g) ΔrH°(0 K) = 198310.81 ± 0.10 (×1.445) cm-1Martin 1970
0.0009501.12 [He2]+ (g) → He (g) He+ (g) ΔrH°(0 K) = 2.343 ± 0.030 eVGadea 1996, Huber 1979, est unc
0.0009501.11 [He2]+ (g) → He (g) He+ (g) ΔrH°(0 K) = 2.366 ± 0.030 eVBauschlicher 1989, Huber 1979, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.