Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Thiozone

Formula: SSS (g)
CAS RN: 12597-03-4
ATcT ID: 12597-03-4*0
SMILES: S=S=S
SMILES: [S]S[S]
InChI: InChI=1S/S3/c1-3-2
InChIKey: NVSDADJBGGUCLP-UHFFFAOYSA-N
Hills Formula: S3

2D Image:

S=S=S
Aliases: SSS; Thiozone; Trithiirane; Trisulfur; Sulfur trimer; Triatomic sulfur; Chain thiozone; Trisulfur chain; Chain trisulfur; Sulfur trimer chain; Chain sulfur trimer; Triatomic sulfur chain; Chain triatomic sulfur; 557774-20-6; Trithio; lambda4-Sulfanedithione
Relative Molecular Mass: 96.1980 ± 0.0180

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
144.28142.91± 0.71kJ/mol

3D Image of SSS (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of SSS (g)

The 20 contributors listed below account for 90.0% of the provenance of ΔfH° of SSS (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
15.19687.7 SSS (g) → 3 S (g) ΔrH°(0 K) = 163.96 ± 0.30 kcal/molKarton 2011
15.09692.7 SSS (g) → S2 (g) S (g) ΔrH°(0 K) = 62.26 ± 0.30 kcal/molKarton 2011
15.09694.11 SSS (g) → 3 S2 (g) ΔrH°(0 K) = 22.82 ± 0.60 kcal/molKarton 2011
9.39602.1 S (cr,l) O2 (g) → OSO (g) ΔrH°(298.15 K) = -296.847 ± 0.200 kJ/molEckman 1929, note SO2
4.99749.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.85 ± 0.06 kcal/molGood 1960, CODATA Key Vals
3.79694.1 SSS (g) → 3 S2 (g) ΔrG°(573 K) = 20.2 ± 5.0 kJ/molDetry 1967, 3rd Law, est unc
3.79692.6 SSS (g) → S2 (g) S (g) ΔrH°(0 K) = 61.78 ± 0.60 kcal/molKarton 2011
3.79694.10 SSS (g) → 3 S2 (g) ΔrH°(0 K) = 22.28 ± 1.20 kcal/molKarton 2011
3.69749.2 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.92 ± 0.07 kcal/molMansson 1963, CODATA Key Vals
3.49622.1 SO (g) → S (g) O (g) ΔrH°(0 K) = 43275 ± 5 cm-1Clerbaux 1994
2.19694.3 SSS (g) → 3 S2 (g) ΔrG°(573 K) = 26.1 ± 5.0 (×1.325) kJ/molRau 1973a, Rau 1973, 3rd Law, est unc
1.89587.2 S (cr,l) → S2 (g) ΔrG°(570 K) = 9.483 ± 0.138 (×1.874) kcal/molDrowart 1968, Detry 1967, 3rd Law
1.49788.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 45 H2O) ΔrH°(298.15 K) = -143.67 ± 0.11 kcal/molMcCullough 1957a
1.49687.6 SSS (g) → 3 S (g) ΔrH°(0 K) = 163.06 ± 0.60 (×1.61) kcal/molKarton 2011
1.39587.4 S (cr,l) → S2 (g) ΔrG°(600 K) = 8.57 ± 0.29 (×1.044) kcal/molBraune 1951, West 1929, Gurvich TPIS, 3rd Law
1.09748.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 70 H2O) ΔrH°(298.15 K) = -143.58 ± 0.09 (×1.477) kcal/molMcCullough 1953, CODATA Key Vals
0.79692.5 SSS (g) → S2 (g) S (g) ΔrH°(0 K) = 61.10 ± 1.35 kcal/molKarton 2011
0.79694.9 SSS (g) → 3 S2 (g) ΔrH°(0 K) = 20.69 ± 2.70 kcal/molKarton 2011
0.79749.3 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.70 ± 0.07 (×2.278) kcal/molWaddington 1956, Mansson 1963, est unc
0.69747.1 OSO (g) + 1/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (cr,l) ΔrH°(298.15 K) = -231.329 ± 0.040 kJ/molNBS Tables 1989

Top 10 species with enthalpies of formation correlated to the ΔfH° of SSS (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.2 Trisulfide[SSS]- (g)[S]S[S-]-83.72-84.64± 0.71kJ/mol96.1985 ±
0.0180
12597-04-5*0
55.5 DisulfurS2 (g)S=S127.38127.69± 0.27kJ/mol64.1320 ±
0.0120
23550-45-0*0
55.4 SulfurS (g)[S]276.84279.08± 0.14kJ/mol32.0660 ±
0.0060
7704-34-9*0
55.4 Monosulfur anionS- (g)[S-]76.4378.48± 0.14kJ/mol32.0665 ±
0.0060
14337-03-2*0
55.2 Monosulfur cationS+ (g)[S+]1276.421278.21± 0.14kJ/mol32.0655 ±
0.0060
14701-12-3*0
54.3 Sulfur atom dication[S]+2 (g)[S++]3528.193531.88± 0.14kJ/mol32.0649 ±
0.0060
14127-58-3*0
50.2 Sulfur monoxideSO (g)S=O5.966.00± 0.13kJ/mol48.0654 ±
0.0060
13827-32-2*0
50.1 Sulfur dioxideOSO (g)O=S=O-294.20-296.74± 0.13kJ/mol64.0648 ±
0.0060
7446-09-5*0
49.5 Oxosulfur[SO]+ (g)[S+]=O999.26999.87± 0.13kJ/mol48.0649 ±
0.0060
767269-11-4*0
49.3 Sulfonyl cation[OSO]+ (g)O=[S+]=O897.01894.74± 0.13kJ/mol64.0643 ±
0.0060
12439-77-9*0

Most Influential reactions involving SSS (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9969689.1 [SSS]- (g) → SSS (g) ΔrH°(0 K) = 2.3630 ± 0.0009 eVKim 2013a
0.3839688.2 SSS (g) → [SSS]+ (g) ΔrH°(0 K) = 9.63 ± 0.03 eVCheng 1998
0.2189687.7 SSS (g) → 3 S (g) ΔrH°(0 K) = 163.96 ± 0.30 kcal/molKarton 2011
0.2189694.11 SSS (g) → 3 S2 (g) ΔrH°(0 K) = 22.82 ± 0.60 kcal/molKarton 2011
0.2189692.7 SSS (g) → S2 (g) S (g) ΔrH°(0 K) = 62.26 ± 0.30 kcal/molKarton 2011
0.2159688.6 SSS (g) → [SSS]+ (g) ΔrH°(0 K) = 9.596 ± 0.040 eVRuscic W1RO
0.1739701.4 SSS (g) → S(SS) (g) ΔrH°(0 K) = 1798 ± 420 cm-1Ruscic W1RO
0.1519701.2 SSS (g) → S(SS) (g) ΔrH°(0 K) = 1822 ± 450 cm-1Ruscic G4
0.1279701.1 SSS (g) → S(SS) (g) ΔrH°(0 K) = 2413 ± 490 cm-1Ruscic G3X
0.1199688.1 SSS (g) → [SSS]+ (g) ΔrH°(0 K) = 9.68 ± 0.03 (×1.795) eVBerkowitz 1968
0.0979701.3 SSS (g) → S(SS) (g) ΔrH°(0 K) = 1949 ± 560 cm-1Ruscic CBS-n
0.0649688.4 SSS (g) → [SSS]+ (g) ΔrH°(0 K) = 9.620 ± 0.073 eVRuscic G4
0.0559694.1 SSS (g) → 3 S2 (g) ΔrG°(573 K) = 20.2 ± 5.0 kJ/molDetry 1967, 3rd Law, est unc
0.0549694.10 SSS (g) → 3 S2 (g) ΔrH°(0 K) = 22.28 ± 1.20 kcal/molKarton 2011
0.0549692.6 SSS (g) → S2 (g) S (g) ΔrH°(0 K) = 61.78 ± 0.60 kcal/molKarton 2011
0.0399688.3 SSS (g) → [SSS]+ (g) ΔrH°(0 K) = 9.624 ± 0.093 eVRuscic G3X
0.0359688.5 SSS (g) → [SSS]+ (g) ΔrH°(0 K) = 9.613 ± 0.099 eVRuscic CBS-n
0.0319694.3 SSS (g) → 3 S2 (g) ΔrG°(573 K) = 26.1 ± 5.0 (×1.325) kJ/molRau 1973a, Rau 1973, 3rd Law, est unc
0.0219687.6 SSS (g) → 3 S (g) ΔrH°(0 K) = 163.06 ± 0.60 (×1.61) kcal/molKarton 2011
0.0109694.9 SSS (g) → 3 S2 (g) ΔrH°(0 K) = 20.69 ± 2.70 kcal/molKarton 2011


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.