Selected ATcT [1, 2] enthalpy of formation based on version 1.176 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.172 to include species related to Criegee intermediates that are involved in several ongoing studies[4].
|
Difluoroamidogen |
Formula: NF2 (g) |
CAS RN: 3744-07-8 |
ATcT ID: 3744-07-8*0 |
SMILES: [N](F)F |
InChI: InChI=1S/F2N/c1-3-2 |
InChIKey: BBZREMAMWBDNHH-UHFFFAOYSA-N |
Hills Formula: F2N1 |
2D Image: |
|
Aliases: NF2; Difluoroamidogen; Difluoroamino |
Relative Molecular Mass: 52.003546 ± 0.000070 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
36.24 | 33.66 | ± 0.63 | kJ/mol |
|
3D Image of NF2 (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of NF2 (g)The 20 contributors listed below account only for 81.1% of the provenance of ΔfH° of NF2 (g). A total of 40 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 24.8 | 2155.6 | NF2 (g) → N (g) + 2 F (g)  | ΔrH°(0 K) = 140.92 ± 0.3 kcal/mol | Feller 2008 | 13.3 | 2167.6 | NF (g, triplet) → N (g) + F (g)  | ΔrH°(0 K) = 75.35 ± 0.3 kcal/mol | Feller 2008 | 7.3 | 1719.1 | NH3 (g) + HF (l) → (NH4)F (cr,l)  | ΔrH°(298.15 K) = -28.2 ± 0.2 kcal/mol | Higgins 1961, NBS Tables 1989 | 5.4 | 2165.1 | NF3 (g) → [NF2]+ (g, singlet) + F (g)  | ΔrH°(0 K) = 14.100 ± 0.008 eV | Berkowitz 1984 | 5.1 | 2156.1 | NF2 (g) → [NF2]+ (g, singlet)  | ΔrH°(0 K) = 11.628 ± 0.011 eV | Berkowitz 1984 | 3.3 | 2150.1 | NF3 (g) + 3/2 H2 (g) → 1/2 N2 (g) + 3 HF (aq, 100 H2O)  | ΔrH°(298.15 K) = -199.46 ± 0.22 kcal/mol | Sinke 1965a | 2.7 | 2162.6 | NF3 (g) → NF2 (g) + F (g)  | ΔrH°(0 K) = 56.97 ± 0.6 kcal/mol | Feller 2008, est unc | 2.7 | 2152.1 | 1/2 N2 (g) + 3/2 F2 (g) → NF3 (g)  | ΔrH°(298.15 K) = -31.44 ± 0.30 kcal/mol | Sinke 1967 | 2.6 | 2179.6 | NF2NF2 (g, trans) → 2 N (g) + 4 F (g)  | ΔrH°(0 K) = 300.63 ± 1.50 kcal/mol | Grant 2011 | 1.7 | 2149.1 | NF3 (g) + 3/2 H2 (g) → 1/2 N2 (g) + 3 HF (aq)  | ΔrH°(298.15 K) = -871.8 ± 1.2 kJ/mol | Armstrong 1959 | 1.7 | 2177.6 | NF2 (g) → NF (g, triplet) + F (g)  | ΔrH°(0 K) = 65.57 ± 0.3 kcal/mol | Feller 2008, est unc | 1.5 | 2156.2 | NF2 (g) → [NF2]+ (g, singlet)  | ΔrH°(0 K) = 11.62 ± 0.02 eV | Cornford 1971d | 1.2 | 2178.1 | NF2 (g) → [NF]+ (g) + F (g)  | ΔrH°(0 K) = 15.090 ± 0.010 eV | Berkowitz 1984 | 1.1 | 2188.4 | NF2NF2 (g, trans) → 2 NF2 (g)  | ΔrG°(398 K) = 3.96 ± 0.5 kcal/mol | Johnson 1961, 3rd Law, est unc | 1.1 | 2188.1 | NF2NF2 (g, trans) → 2 NF2 (g)  | ΔrH°(320 K) = 21.78 ± 0.5 kcal/mol | Johnson 1961, 2nd Law, est unc, Colburn 1960 | 1.1 | 2188.2 | NF2NF2 (g, trans) → 2 NF2 (g)  | ΔrG°(320 K) = 7.38 ± 0.5 kcal/mol | Johnson 1961, 3rd Law, est unc | 0.9 | 2155.8 | NF2 (g) → N (g) + 2 F (g)  | ΔrH°(0 K) = 139.99 ± 1.50 kcal/mol | Ricca 1998b, est unc | 0.9 | 2155.7 | NF2 (g) → N (g) + 2 F (g)  | ΔrH°(0 K) = 140.08 ± 1.50 kcal/mol | Grant 2011 | 0.9 | 2193.6 | FNNF (g, cis) → 2 N (g) + 2 F (g)  | ΔrH°(0 K) = 242.53 ± 1.50 kcal/mol | Grant 2011, Christe 2010 | 0.8 | 2194.6 | FNNF (g, trans) → 2 N (g) + 2 F (g)  | ΔrH°(0 K) = 241.25 ± 1.50 kcal/mol | Grant 2011, Christe 2010 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of NF2 (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 78.8 | Tetrafluorohydrazine | NF2NF2 (g, trans) | | -13.4 | -22.9 | ± 1.4 | kJ/mol | 104.00709 ± 0.00014 | 10036-47-2*1 | 78.8 | Tetrafluorohydrazine | NF2NF2 (g) | | -13.4 | -22.5 | ± 1.4 | kJ/mol | 104.00709 ± 0.00014 | 10036-47-2*0 | 78.3 | Tetrafluorohydrazine | NF2NF2 (g, gauche) | | -12.5 | -22.1 | ± 1.4 | kJ/mol | 104.00709 ± 0.00014 | 10036-47-2*2 | 64.0 | Ammonium fluoride | (NH4)F (cr,l) | | -452.48 | -467.05 | ± 0.38 | kJ/mol | 37.03690 ± 0.00029 | 12125-01-8*500 | 60.9 | Fluoroaminyliumyl | [NF]+ (g) | | 1415.09 | 1415.63 | ± 0.85 | kJ/mol | 33.004595 ± 0.000070 | 33146-36-0*0 | 58.0 | Fluoroimidogen | NF (g) | | 232.64 | 232.64 | ± 0.80 | kJ/mol | 33.005143 ± 0.000070 | 13967-06-1*0 | 58.0 | Fluoroimidogen | NF (g, triplet) | | 232.64 | 232.63 | ± 0.80 | kJ/mol | 33.005143 ± 0.000070 | 13967-06-1*1 | 58.0 | Fluoroimidogen | NF (g, singlet) | | 369.43 | 369.41 | ± 0.80 | kJ/mol | 33.005143 ± 0.000070 | 13967-06-1*2 | 54.5 | Difluoroaminylium | [NF2]+ (g, singlet) | | 1157.81 | 1154.93 | ± 0.71 | kJ/mol | 52.002998 ± 0.000070 | 31685-31-1*2 | 54.5 | Difluoroaminylium | [NF2]+ (g) | | 1157.81 | 1154.93 | ± 0.71 | kJ/mol | 52.002998 ± 0.000070 | 31685-31-1*0 |
|
Most Influential reactions involving NF2 (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.500 | 2178.1 | NF2 (g) → [NF]+ (g) + F (g)  | ΔrH°(0 K) = 15.090 ± 0.010 eV | Berkowitz 1984 | 0.364 | 2156.1 | NF2 (g) → [NF2]+ (g, singlet)  | ΔrH°(0 K) = 11.628 ± 0.011 eV | Berkowitz 1984 | 0.281 | 2177.6 | NF2 (g) → NF (g, triplet) + F (g)  | ΔrH°(0 K) = 65.57 ± 0.3 kcal/mol | Feller 2008, est unc | 0.249 | 2155.6 | NF2 (g) → N (g) + 2 F (g)  | ΔrH°(0 K) = 140.92 ± 0.3 kcal/mol | Feller 2008 | 0.223 | 2157.1 | NF2 (g) → [NF2]+ (g, triplet)  | ΔrH°(0 K) = 13.92 ± 0.05 eV | Cornford 1971d, Williamson 1957 | 0.214 | 2189.1 | NF2NF2 (g, trans) → [NF2]+ (g, singlet) + NF2 (g)  | ΔrH°(0 K) = 12.514 ± 0.020 eV | Berkowitz 1984 | 0.159 | 2188.1 | NF2NF2 (g, trans) → 2 NF2 (g)  | ΔrH°(320 K) = 21.78 ± 0.5 kcal/mol | Johnson 1961, 2nd Law, est unc, Colburn 1960 | 0.159 | 2188.4 | NF2NF2 (g, trans) → 2 NF2 (g)  | ΔrG°(398 K) = 3.96 ± 0.5 kcal/mol | Johnson 1961, 3rd Law, est unc | 0.159 | 2188.2 | NF2NF2 (g, trans) → 2 NF2 (g)  | ΔrG°(320 K) = 7.38 ± 0.5 kcal/mol | Johnson 1961, 3rd Law, est unc | 0.148 | 2158.5 | [NF2]- (g) → NF2 (g)  | ΔrH°(0 K) = 1.112 ± 0.050 eV | Ruscic W1RO | 0.123 | 2158.6 | [NF2]- (g) → NF2 (g)  | ΔrH°(0 K) = 1.114 ± 0.055 eV | Grant 2011 | 0.110 | 2156.2 | NF2 (g) → [NF2]+ (g, singlet)  | ΔrH°(0 K) = 11.62 ± 0.02 eV | Cornford 1971d | 0.100 | 2158.2 | [NF2]- (g) → NF2 (g)  | ΔrH°(0 K) = 1.110 ± 0.061 eV | Ruscic G4 | 0.067 | 2162.6 | NF3 (g) → NF2 (g) + F (g)  | ΔrH°(0 K) = 56.97 ± 0.6 kcal/mol | Feller 2008, est unc | 0.053 | 2189.6 | NF2NF2 (g, trans) → [NF2]+ (g, singlet) + NF2 (g)  | ΔrH°(0 K) = 12.526 ± 0.040 eV | Ruscic W1RO | 0.051 | 2158.1 | [NF2]- (g) → NF2 (g)  | ΔrH°(0 K) = 1.125 ± 0.085 eV | Ruscic G3X | 0.045 | 2158.4 | [NF2]- (g) → NF2 (g)  | ΔrH°(0 K) = 1.102 ± 0.090 eV | Ruscic CBS-n | 0.043 | 2158.3 | [NF2]- (g) → NF2 (g)  | ΔrH°(0 K) = 1.102 ± 0.092 eV | Ruscic CBS-n | 0.039 | 2188.6 | NF2NF2 (g, trans) → 2 NF2 (g)  | ΔrG°(399 K) = 3.5 ± 1.0 kcal/mol | Piette 1961, 3rd Law, est unc | 0.031 | 2178.6 | NF2 (g) → [NF]+ (g) + F (g)  | ΔrH°(0 K) = 15.087 ± 0.040 eV | Ruscic W1RO |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.176 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
T. L. Nguyen et al, ongoing studies (2024)
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|