Selected ATcT [1, 2] enthalpy of formation based on version 1.176 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.172 to include species related to Criegee intermediates that are involved in several ongoing studies[4].
|
Nitrogen atom cation |
Formula: N+ (g) |
CAS RN: 14158-23-7 |
ATcT ID: 14158-23-7*0 |
SMILES: [N+] |
InChI: InChI=1S/N/q+1 |
InChIKey: DELRCXTYJVVNEW-UHFFFAOYSA-N |
Hills Formula: N1+ |
2D Image: |
|
Aliases: N+; Nitrogen atom cation; Nitrogen atom ion (1+); Nitrogen cation; Nitrogen ion (1+); Atomic nitrogen cation; Atomic nitrogen ion (1+); Nitrogen radical cation; Nitrogen radical ion (1+); Mononitrogen cation; Mononitrogen ion (1+) |
Relative Molecular Mass: 14.006191 ± 0.000070 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
1872.911 | 1875.692 | ± 0.022 | kJ/mol |
|
3D Image of N+ (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of N+ (g)The 19 contributors listed below account for 90.1% of the provenance of ΔfH° of N+ (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 24.5 | 1436.3 | N2 (g) → N+ (g) + N (g)  | ΔrH°(0 K) = 24.2880 ± 0.0009 eV | Tang 2005 | 19.8 | 1436.2 | N2 (g) → N+ (g) + N (g)  | ΔrH°(0 K) = 24.2883 ± 0.0010 eV | Tang 2005 | 19.8 | 1436.1 | N2 (g) → N+ (g) + N (g)  | ΔrH°(0 K) = 24.2888 ± 0.0010 eV | Tang 2005 | 8.2 | 1413.11 | N2 (g) → 2 N (g)  | ΔrH°(0 K) = 941.14 ± 0.15 kJ/mol | Thorpe 2021 | 6.3 | 1437.2 | [N2]+ (g) → N+ (g) + N (g)  | ΔrH°(0 K) = 70248 ± 12 (×1.189) cm-1 | Hertzler 1992, Douglas 1952, Hertzler 1990, Janin 1957, est unc | 3.9 | 1420.10 | N2 (g) → 2 N (g, doublet)  | ΔrH°(0 K) = 117127.5 ± 18.0 cm-1 | Roncin 1984, note N2 | 2.5 | 1420.9 | N2 (g) → 2 N (g, doublet)  | ΔrH°(0 K) = 117105.5 ± 22.7 cm-1 | Roncin 1984, note N2 | 0.7 | 1410.2 | N2 (g) → 2 N (g)  | ΔrH°(0 K) = 78716 ± 40 (×1.022) cm-1 | Carroll 1965, note N2 | 0.5 | 1413.7 | N2 (g) → 2 N (g)  | ΔrH°(0 K) = 941.56 ± 0.56 kJ/mol | Harding 2008 | 0.5 | 1410.1 | N2 (g) → 2 N (g)  | ΔrH°(0 K) = 78715 ± 50 cm-1 | Buttenbender 1935, Gaydon 1968, note N2, as quoted by CODATA Key Vals | 0.4 | 1412.4 | N2 (g) → 2 N (g)  | ΔrH°(0 K) = 225.01 ± 0.15 kcal/mol | Karton 2007a, Karton 2006, Karton 2011 | 0.3 | 1413.4 | N2 (g) → 2 N (g)  | ΔrH°(0 K) = 941.61 ± 0.70 kJ/mol | Bomble 2006 | 0.3 | 1413.5 | N2 (g) → 2 N (g)  | ΔrH°(0 K) = 941.74 ± 0.70 kJ/mol | Harding 2008 | 0.3 | 1413.6 | N2 (g) → 2 N (g)  | ΔrH°(0 K) = 941.09 ± 0.74 kJ/mol | Harding 2008 | 0.3 | 1413.3 | N2 (g) → 2 N (g)  | ΔrH°(0 K) = 941.14 ± 0.75 kJ/mol | Bomble 2006 | 0.3 | 1413.1 | N2 (g) → 2 N (g)  | ΔrH°(0 K) = 941.07 ± 0.75 kJ/mol | Tajti 2004, est unc | 0.2 | 1413.2 | N2 (g) → 2 N (g)  | ΔrH°(0 K) = 941.78 ± 0.80 kJ/mol | Bomble 2006 | 0.2 | 1414.1 | N2 (g) → 2 N (g)  | ΔrH°(0 K) = 225.0 ± 0.2 kcal/mol | Feller 2006a | 0.2 | 1414.6 | N2 (g) → 2 N (g)  | ΔrH°(0 K) = 224.99 ± 0.20 kcal/mol | Feller 2014 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of N+ (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.9 | Nitrogen atom | N (g) | | 470.583 | 472.445 | ± 0.022 | kJ/mol | 14.006740 ± 0.000070 | 17778-88-0*0 | 99.9 | Nitrogen atom | N (g, quartet) | | 470.583 | 472.445 | ± 0.022 | kJ/mol | 14.006740 ± 0.000070 | 17778-88-0*1 | 99.9 | Nitrogen atom | N (g, doublet) | | 700.559 | 702.462 | ± 0.022 | kJ/mol | 14.006740 ± 0.000070 | 17778-88-0*2 | 93.1 | Nitrogen atom dication | [N]+2 (g) | | 4728.998 | 4731.826 | ± 0.024 | kJ/mol | 14.005643 ± 0.000070 | 17439-59-7*0 | 31.0 | Nitric oxide | NO (g) | | 90.627 | 91.131 | ± 0.064 | kJ/mol | 30.00614 ± 0.00031 | 10102-43-9*0 | 31.0 | Nitrogen dioxide | ONO (g) | | 36.866 | 34.059 | ± 0.064 | kJ/mol | 46.00554 ± 0.00060 | 10102-44-0*0 | 31.0 | Nitrosyl ion | [NO]+ (g) | | 984.494 | 984.489 | ± 0.064 | kJ/mol | 30.00559 ± 0.00031 | 14452-93-8*0 | 30.1 | Dinitrogen tetraoxide | O2NNO2 (g) | | 20.17 | 10.88 | ± 0.14 | kJ/mol | 92.0111 ± 0.0012 | 10544-72-6*0 | 29.9 | Nitrosyl chloride | ClNO (g) | | 54.461 | 52.559 | ± 0.067 | kJ/mol | 65.45884 ± 0.00095 | 2696-92-6*0 | 29.2 | Dioxohydrazine | ONNO (g, cis) | | 172.91 | 171.14 | ± 0.14 | kJ/mol | 60.01228 ± 0.00062 | 16824-89-8*2 |
|
Most Influential reactions involving N+ (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.999 | 1426.1 | N+ (g) → [N]+2 (g)  | ΔrH°(0 K) = 238750.2 ± 0.7 cm-1 | NIST Atomic Web, Biemont 1999 | 0.658 | 1424.1 | N (g) → N+ (g)  | ΔrH°(0 K) = 117225.4 ± 0.1 cm-1 | McConkey 1968, Moore 1970 | 0.245 | 1436.3 | N2 (g) → N+ (g) + N (g)  | ΔrH°(0 K) = 24.2880 ± 0.0009 eV | Tang 2005 | 0.198 | 1436.2 | N2 (g) → N+ (g) + N (g)  | ΔrH°(0 K) = 24.2883 ± 0.0010 eV | Tang 2005 | 0.198 | 1436.1 | N2 (g) → N+ (g) + N (g)  | ΔrH°(0 K) = 24.2888 ± 0.0010 eV | Tang 2005 | 0.168 | 1424.4 | N (g) → N+ (g)  | ΔrH°(0 K) = 117225.66 ± 0.11 (×1.795) cm-1 | Eriksson 1986, de Beer 1992, est unc | 0.073 | 1424.5 | N (g) → N+ (g)  | ΔrH°(0 K) = 117225.4 ± 0.3 cm-1 | Biemont 1999 | 0.073 | 1424.3 | N (g) → N+ (g)  | ΔrH°(0 K) = 117225.7 ± 0.3 cm-1 | Eriksson 1971 | 0.065 | 8542.1 | SiF4 (g) + N+ (g) → [SiF4]+ (g) + N (g)  | ΔrH°(0 K) = 0.77 ± 0.38 eV | Kickel 1993, note unc | 0.063 | 1437.2 | [N2]+ (g) → N+ (g) + N (g)  | ΔrH°(0 K) = 70248 ± 12 (×1.189) cm-1 | Hertzler 1992, Douglas 1952, Hertzler 1990, Janin 1957, est unc | 0.026 | 1424.2 | N (g) → N+ (g)  | ΔrH°(0 K) = 117225.35 ± 0.5 cm-1 | McConkey 1968 | 0.025 | 1709.5 | N+ (g) + H2 (g) → [NH]+ (g) + H (g)  | ΔrH°(0 K) = 0.016 ± 0.015 eV | Tarroni 1997, Tosi 1994, est unc | 0.019 | 1449.4 | [NNN]+ (g) + [CO]+ (g) + O+ (g) → [CO2]+ (g) + [N2]+ (g) + N+ (g)  | ΔrH°(0 K) = -0.12 ± 1.50 kcal/mol | Ruscic W1RO | 0.017 | 1449.3 | [NNN]+ (g) + [CO]+ (g) + O+ (g) → [CO2]+ (g) + [N2]+ (g) + N+ (g)  | ΔrH°(0 K) = -2.38 ± 1.60 kcal/mol | Ruscic CBS-n | 0.017 | 1449.2 | [NNN]+ (g) + [CO]+ (g) + O+ (g) → [CO2]+ (g) + [N2]+ (g) + N+ (g)  | ΔrH°(0 K) = -1.93 ± 1.60 kcal/mol | Ruscic G4 | 0.015 | 1449.1 | [NNN]+ (g) + [CO]+ (g) + O+ (g) → [CO2]+ (g) + [N2]+ (g) + N+ (g)  | ΔrH°(0 K) = -1.72 ± 1.72 kcal/mol | Ruscic G3X | 0.010 | 1709.2 | N+ (g) + H2 (g) → [NH]+ (g) + H (g)  | ΔrH°(0 K) = 0.046 ± 0.016 (×1.477) eV | Ervin 1987, Adams 1985 | 0.009 | 1709.1 | N+ (g) + H2 (g) → [NH]+ (g) + H (g)  | ΔrH°(0 K) = 0.033 ± 0.024 eV | Ervin 1987 | 0.007 | 1703.1 | [NH]+ (g) → N+ (g) + H (g)  | ΔrH°(0 K) = 102.99 ± 0.63 kcal/mol | Galek 2006 | 0.006 | 1709.3 | N+ (g) + H2 (g) → [NH]+ (g) + H (g)  | ΔrH°(0 K) = 0.022 ± 0.03 eV | Ervin 1987, Marquette 1985, est unc |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.176 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
T. L. Nguyen et al, ongoing studies (2024)
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|