Selected ATcT [1, 2] enthalpy of formation based on version 1.176 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.172 to include species related to Criegee intermediates that are involved in several ongoing studies[4].
|
Dihydrogen |
Formula: H2 (g, ortho) |
CAS RN: 1333-74-0 |
ATcT ID: 1333-74-0*1 |
SMILES: [H][H] |
InChI: InChI=1S/H2/h1H |
InChIKey: UFHFLCQGNIYNRP-UHFFFAOYSA-N |
Hills Formula: H2 |
2D Image: |
|
Aliases: H2; Dihydrogen; Hydrogen molecule; Hydrogen; Molecular hydrogen; Diatomic hydrogen; o-Hydrogen; p-Hydrogen |
Relative Molecular Mass: 2.01588 ± 0.00014 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
1.417 | 0.019 | ± 0.000 | kJ/mol |
|
3D Image of H2 (g, ortho) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of H2 (g, ortho)The 9 contributors listed below account for 91.2% of the provenance of ΔfH° of H2 (g, ortho).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 40.9 | 68.1 | H2 (g, para) → H2 (g)  | ΔrH°(0 K) = 0.0 ± 0.0 cm-1 | triv | 16.5 | 66.13 | H2 (g) → [H2]+ (g)  | ΔrH°(0 K) = 124417.49113 ± 0.00074 cm-1 | Liu 2012, note unc | 16.1 | 70.1 | H2 (g, ortho) → [H2]+ (g)  | ΔrH°(0 K) = 124299.00429 ± 0.00071 cm-1 | Liu 2009, note unc, Hannemann 2006, Osterwalder 2004, Karr 2008, Korobov 2006, Korobov 2006a, Korobov 2008 | 3.7 | 74.1 | [H2]+ (g, para) → [H2]+ (g)  | ΔrH°(0 K) = 0. ± 0. cm-1 | Moss 1993b | 2.8 | 69.8 | H2 (g, para) → H2 (g, ortho)  | ΔrH°(0 K) = 118.48680 ± 0.00022 cm-1 | Piszczatowski 2009, note unc | 2.8 | 69.10 | H2 (g, para) → H2 (g, ortho)  | ΔrH°(0 K) = 118.4868127 ± 0.0000022 cm-1 | Puchalski 2019, note unc | 2.8 | 69.5 | H2 (g, para) → H2 (g, ortho)  | ΔrH°(0 K) = 118.487 ± 0.001 cm-1 | Schwartz 1987 | 2.8 | 69.7 | H2 (g, para) → H2 (g, ortho)  | ΔrH°(0 K) = 118.486837 ± 0.000222 cm-1 | Jennings 1987, note unc | 2.4 | 75.1 | [H2]+ (g, para) → [H2]+ (g, ortho)  | ΔrH°(0 K) = 58.2336750974 ± 0.0000000016 cm-1 | Korobov 2018, note unc, Schuder 2017 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of H2 (g, ortho) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 83.4 | Dihydrogen | H2 (g, para) | | -0.000 | -0.058 | ± 0.000 | kJ/mol | 2.01588 ± 0.00014 | 1333-74-0*2 | 82.0 | Dihydrogen cation | [H2]+ (g, ortho) | | 1489.060 | 1488.480 | ± 0.000 | kJ/mol | 2.01533 ± 0.00014 | 12184-90-6*1 | 67.3 | Dihydrogen cation | [H2]+ (g, para) | | 1488.364 | 1488.480 | ± 0.000 | kJ/mol | 2.01533 ± 0.00014 | 12184-90-6*2 | 58.0 | Dihydrogen cation | [H2]+ (g) | | 1488.364 | 1488.480 | ± 0.000 | kJ/mol | 2.01533 ± 0.00014 | 12184-90-6*0 | 45.0 | Hydron | H+ (g) | | 1528.084 | 1530.047 | ± 0.000 | kJ/mol | 1.007391 ± 0.000070 | 12408-02-5*0 | 13.1 | Deuterium hydride cation | [HD]+ (g) | | 1490.498 | 1490.587 | ± 0.000 | kJ/mol | 3.021493 ± 0.000070 | 12181-16-7*0 | 12.9 | Hydrogen atom | H (g) | | 216.034 | 217.998 | ± 0.000 | kJ/mol | 1.007940 ± 0.000070 | 12385-13-6*0 | 9.7 | Deuterium hydride | HD (g) | | 0.328 | 0.319 | ± 0.000 | kJ/mol | 3.022042 ± 0.000070 | 13983-20-5*0 | 3.7 | Hydride | H- (g) | | 143.264 | 145.228 | ± 0.000 | kJ/mol | 1.008489 ± 0.000070 | 12184-88-2*0 |
|
Most Influential reactions involving H2 (g, ortho)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.486 | 70.1 | H2 (g, ortho) → [H2]+ (g)  | ΔrH°(0 K) = 124299.00429 ± 0.00071 cm-1 | Liu 2009, note unc, Hannemann 2006, Osterwalder 2004, Karr 2008, Korobov 2006, Korobov 2006a, Korobov 2008 | 0.279 | 71.2 | H2 (g, ortho) → [H2]+ (g, ortho)  | ΔrH°(0 K) = 124357.238062 ± 0.000050 cm-1 | Cheng 2018a, note unc | 0.279 | 71.1 | H2 (g, ortho) → [H2]+ (g, ortho)  | ΔrH°(0 K) = 124357.238003 ± 0.000022 cm-1 | Holsch 2019, note unc | 0.279 | 71.3 | H2 (g, ortho) → [H2]+ (g, ortho)  | ΔrH°(0 K) = 124357.23797 ± 0.00072 cm-1 | Liu 2009, note unc, Hannemann 2006, Osterwalder 2004, Karr 2008, Korobov 2006, Korobov 2006a, Korobov 2008 | 0.206 | 69.8 | H2 (g, para) → H2 (g, ortho)  | ΔrH°(0 K) = 118.48680 ± 0.00022 cm-1 | Piszczatowski 2009, note unc | 0.206 | 69.5 | H2 (g, para) → H2 (g, ortho)  | ΔrH°(0 K) = 118.487 ± 0.001 cm-1 | Schwartz 1987 | 0.206 | 69.7 | H2 (g, para) → H2 (g, ortho)  | ΔrH°(0 K) = 118.486837 ± 0.000222 cm-1 | Jennings 1987, note unc | 0.206 | 69.10 | H2 (g, para) → H2 (g, ortho)  | ΔrH°(0 K) = 118.4868127 ± 0.0000022 cm-1 | Puchalski 2019, note unc | 0.002 | 69.3 | H2 (g, para) → H2 (g, ortho)  | ΔrH°(0 K) = 118.48 ± 0.01 cm-1 | Huber 1979, est unc | 0.000 | 69.2 | H2 (g, para) → H2 (g, ortho)  | ΔrH°(0 K) = 118.495 ± 0.02 cm-1 | Herzberg 1960, est unc | 0.000 | 69.4 | H2 (g, para) → H2 (g, ortho)  | ΔrH°(0 K) = 118.50 ± 0.02 cm-1 | Dabrowski 1984, est unc | 0.000 | 71.4 | H2 (g, ortho) → [H2]+ (g, ortho)  | ΔrH°(0 K) = 124357.45 ± 0.07 (×3.084) cm-1 | Glab 1987 | 0.000 | 71.5 | H2 (g, ortho) → [H2]+ (g, ortho)  | ΔrH°(0 K) = 124357.5 ± 0.5 cm-1 | Herzberg 1972, est unc |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.176 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
T. L. Nguyen et al, ongoing studies (2024)
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|