Selected ATcT [1, 2] enthalpy of formation based on version 1.176 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.172 to include species related to Criegee intermediates that are involved in several ongoing studies[4].

Nitrous acid

Formula: HONO (g, cis)
CAS RN: 7782-77-6
ATcT ID: 7782-77-6*2
SMILES: N(=O)O
InChI: InChI=1S/HNO2/c2-1-3/h(H,2,3)
InChIKey: IOVCWXUNBOPUCH-UHFFFAOYSA-N
Hills Formula: H1N1O2

2D Image:

N(=O)O
Aliases: HONO; Nitrous acid; Nytrosyl hydroxide; ONOH; HO-N=O; O=N-OH
Relative Molecular Mass: 47.01348 ± 0.00061

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-71.37-77.73± 0.26kJ/mol

3D Image of HONO (g, cis)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of HONO (g, cis)

The 13 contributors listed below account for 90.3% of the provenance of ΔfH° of HONO (g, cis).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
30.21993.1 HONO (g, trans) → HONO (g, cis) ΔrH°(0 K) = 141 ± 35 cm-1Varma 1976
14.71993.2 HONO (g, trans) → HONO (g, cis) ΔrH°(0 K) = 100 ± 50 cm-1Sironneau 2010, est unc
13.41994.12 HONO (g, trans) → HONO (g, cis) ΔrH°(0 K) = 0.30 ± 0.15 kcal/molFeller 2012, est unc
7.51994.11 HONO (g, trans) → HONO (g, cis) ΔrH°(0 K) = 0.43 ± 0.20 kcal/molKarton 2011
4.81993.3 HONO (g, trans) → HONO (g, cis) ΔrH°(0 K) = 0.506 ± 0.250 kcal/molJones 1951
4.71993.5 HONO (g, trans) → HONO (g, cis) ΔrG°(277 K) = 0.649 ± 0.15 (×1.682) kcal/molBongartz 1991, 3rd Law, note unc3
3.91982.11 HONO (g, cis) → H (g) + 2 O (g) N (g) ΔrH°(0 K) = 299.31 ± 0.30 kcal/molKarton 2011
3.31994.10 HONO (g, trans) → HONO (g, cis) ΔrH°(0 K) = 0.43 ± 0.30 kcal/molKarton 2011
2.21982.12 HONO (g, cis) → H (g) + 2 O (g) N (g) ΔrH°(0 K) = 299.24 ± 0.4 kcal/molFeller 2012
1.61999.8 NO (g) ONO (g) H2O (g) → 2 HONO (g) ΔrG°(298.15 K) = -1.44 ± 0.10 kJ/molVosper 1976, 3rd Law
1.21483.1 NO (g) → N (g) O (g) ΔrH°(0 K) = 52400 ± 10 cm-1Callear 1970
1.21483.2 NO (g) → N (g) O (g) ΔrH°(0 K) = 52400 ± 10 cm-1Dingle 1975
1.11982.10 HONO (g, cis) → H (g) + 2 O (g) N (g) ΔrH°(0 K) = 299.18 ± 0.56 kcal/molKarton 2011

Top 10 species with enthalpies of formation correlated to the ΔfH° of HONO (g, cis)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
31.5 Nitrous acid anion[HONO]- (g, cis)O[N-]=O-105.84-110.46± 0.78kJ/mol47.01403 ±
0.00061
256393-36-9*2
31.5 Nitrous acid anion[HONO]- (g)O[N-]=O-105.84-109.31± 0.78kJ/mol47.01403 ±
0.00061
256393-36-9*0
28.2 Nitrous acidHONO (g, trans)N(=O)O-72.986-79.130± 0.078kJ/mol47.01348 ±
0.00061
7782-77-6*1
28.2 Nitrous acidHONO (g)N(=O)O-72.986-78.643± 0.078kJ/mol47.01348 ±
0.00061
7782-77-6*0
23.3 Nitric oxideNO (g)[N]=O90.62791.131± 0.064kJ/mol30.00614 ±
0.00031
10102-43-9*0
23.3 Nitrogen dioxideONO (g)O=[N]=O36.86634.059± 0.064kJ/mol46.00554 ±
0.00060
10102-44-0*0
23.3 Nitrosyl ion[NO]+ (g)N#[O+]984.494984.489± 0.064kJ/mol30.00559 ±
0.00031
14452-93-8*0
22.7 Dinitrogen tetraoxideO2NNO2 (g)O=N(=O)N(=O)=O20.1710.88± 0.14kJ/mol92.0111 ±
0.0012
10544-72-6*0
22.5 Nitrosyl chlorideClNO (g)ClN=O54.46152.559± 0.067kJ/mol65.45884 ±
0.00095
2696-92-6*0
21.9 DioxohydrazineONNO (g, cis)O=NN=O172.91171.14± 0.14kJ/mol60.01228 ±
0.00062
16824-89-8*2

Most Influential reactions involving HONO (g, cis)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9021986.1 [HONO]- (g, cis) → HONO (g, cis) ΔrH°(0 K) = 0.356 ± 0.008 eVOliveira 2016
0.3331993.1 HONO (g, trans) → HONO (g, cis) ΔrH°(0 K) = 141 ± 35 cm-1Varma 1976
0.2491984.8 HONO (g, cis) → [HONO]+ (g, cis) ΔrH°(0 K) = 11.253 ± 0.040 eVRuscic W1RO
0.1631993.2 HONO (g, trans) → HONO (g, cis) ΔrH°(0 K) = 100 ± 50 cm-1Sironneau 2010, est unc
0.1481994.12 HONO (g, trans) → HONO (g, cis) ΔrH°(0 K) = 0.30 ± 0.15 kcal/molFeller 2012, est unc
0.0831994.11 HONO (g, trans) → HONO (g, cis) ΔrH°(0 K) = 0.43 ± 0.20 kcal/molKarton 2011
0.0751984.4 HONO (g, cis) → [HONO]+ (g, cis) ΔrH°(0 K) = 11.223 ± 0.073 eVRuscic G4
0.0531993.3 HONO (g, trans) → HONO (g, cis) ΔrH°(0 K) = 0.506 ± 0.250 kcal/molJones 1951
0.0521993.5 HONO (g, trans) → HONO (g, cis) ΔrG°(277 K) = 0.649 ± 0.15 (×1.682) kcal/molBongartz 1991, 3rd Law, note unc3
0.0461984.3 HONO (g, cis) → [HONO]+ (g, cis) ΔrH°(0 K) = 11.266 ± 0.093 eVRuscic G3X
0.0461984.7 HONO (g, cis) → [HONO]+ (g, cis) ΔrH°(0 K) = 11.164 ± 0.075 (×1.242) eVRuscic CBS-n
0.0401984.6 HONO (g, cis) → [HONO]+ (g, cis) ΔrH°(0 K) = 11.281 ± 0.099 eVRuscic CBS-n
0.0401982.11 HONO (g, cis) → H (g) + 2 O (g) N (g) ΔrH°(0 K) = 299.31 ± 0.30 kcal/molKarton 2011
0.0371994.10 HONO (g, trans) → HONO (g, cis) ΔrH°(0 K) = 0.43 ± 0.30 kcal/molKarton 2011
0.0231986.9 [HONO]- (g, cis) → HONO (g, cis) ΔrH°(0 K) = 0.347 ± 0.050 eVRuscic W1RO
0.0221982.12 HONO (g, cis) → H (g) + 2 O (g) N (g) ΔrH°(0 K) = 299.24 ± 0.4 kcal/molFeller 2012
0.0151986.5 [HONO]- (g, cis) → HONO (g, cis) ΔrH°(0 K) = 0.398 ± 0.061 eVRuscic G4
0.0111982.10 HONO (g, cis) → H (g) + 2 O (g) N (g) ΔrH°(0 K) = 299.18 ± 0.56 kcal/molKarton 2011
0.0091994.13 HONO (g, trans) → HONO (g, cis) ΔrH°(0 K) = 1.6 ± 2.5 kJ/molKlopper 2010a, est unc
0.0081986.4 [HONO]- (g, cis) → HONO (g, cis) ΔrH°(0 K) = 0.382 ± 0.085 eVRuscic G3X


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.176 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   T. L. Nguyen et al, ongoing studies (2024)
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.