Selected ATcT [1, 2] enthalpy of formation based on version 1.172 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.156 to include species relevant to a study of photodissociation of formamide[4].

Dichlorine cation

Formula: [Cl2]+ (g)
CAS RN: 12595-90-3
ATcT ID: 12595-90-3*0
SMILES: Cl[Cl+]
InChI: InChI=1S/Cl2/c1-2/q+1
InChIKey: IPYDCMMBWLZPDH-UHFFFAOYSA-N
Hills Formula: Cl2+

2D Image:

Cl[Cl+]
Aliases: [Cl2]+; Dichlorine cation; Diatomic chlorine cation; Diatomic chlorine ion (1+); Molecular chlorine cation; Molecular chlorine ion (1+); Chlorine molecule cation; Chlorine molecule ion (1+); Chlorine cation; Chlorine ion (1+); Dichlorine ion (1+)
Relative Molecular Mass: 70.9049 ± 0.0018

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
1108.3071108.286± 0.0062kJ/mol

3D Image of [Cl2]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [Cl2]+ (g)

The 1 contributors listed below account for 91.1% of the provenance of ΔfH° of [Cl2]+ (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
91.1744.1 Cl2 (g) → [Cl2]+ (g) ΔrH°(0 K) = 92647.37 ± 0.5 cm-1Mollet 2013, note unc


Most Influential reactions involving [Cl2]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.911744.1 Cl2 (g) → [Cl2]+ (g) ΔrH°(0 K) = 92647.37 ± 0.5 cm-1Mollet 2013, note unc
0.087744.2 Cl2 (g) → [Cl2]+ (g) ΔrH°(0 K) = 92645.6 ± 1.0 (×1.61) cm-1Li 2007
0.000744.17 Cl2 (g) → [Cl2]+ (g) ΔrH°(0 K) = 264.915 ± 0.097 kcal/molFeller 2017a
0.000744.3 Cl2 (g) → [Cl2]+ (g) ΔrH°(0 K) = 11.481 ± 0.003 (×1.957) eVYencha 1995
0.000744.4 Cl2 (g) → [Cl2]+ (g) ΔrH°(0 K) = 11.480 ± 0.005 (×1.384) eVvan Lonkhuyzen 1984
0.000744.5 Cl2 (g) → [Cl2]+ (g) ΔrH°(0 K) = 11.49 ± 0.01 eVCornford 1971, est unc
0.000744.9 Cl2 (g) → [Cl2]+ (g) ΔrH°(0 K) = 11.49 ± 0.01 eVDyke 1984c, est unc
0.000744.7 Cl2 (g) → [Cl2]+ (g) ΔrH°(0 K) = 11.49 ± 0.01 eVAnderson 1971, est unc
0.000744.8 Cl2 (g) → [Cl2]+ (g) ΔrH°(0 K) = 11.48 ± 0.01 eVWatanabe 1957
0.000744.6 Cl2 (g) → [Cl2]+ (g) ΔrH°(0 K) = 11.51 ± 0.01 (×2.327) eVPotts 1971
0.000744.16 Cl2 (g) → [Cl2]+ (g) ΔrH°(0 K) = 11.506 ± 0.040 eVRuscic W1RO
0.000746.7 [Cl2]+ (g) → 2 Cl (g) ΔrH°(0 K) = -208.79 ± 1.50 kcal/molRuscic W1RO
0.000746.4 [Cl2]+ (g) → 2 Cl (g) ΔrH°(0 K) = -207.81 ± 1.60 kcal/molRuscic G4
0.000746.3 [Cl2]+ (g) → 2 Cl (g) ΔrH°(0 K) = -209.13 ± 1.72 kcal/molRuscic G3X
0.000744.13 Cl2 (g) → [Cl2]+ (g) ΔrH°(0 K) = 11.466 ± 0.073 eVRuscic G4
0.000744.12 Cl2 (g) → [Cl2]+ (g) ΔrH°(0 K) = 11.470 ± 0.093 eVRuscic G3X
0.000744.15 Cl2 (g) → [Cl2]+ (g) ΔrH°(0 K) = 11.495 ± 0.099 eVRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.172 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   K. L. Caster, N. A. Seifert, B. Ruscic, A. W. Jasper, and K. Prozument,
Dynamics of HCN, NHC, and HNCO Formation in the 193 nm Photodissociation of Formamide
J. Phys. Chem. A (in press) (2024) [DOI: 10.1021/acs.jpca.4c02232]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
Uncertainties The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
Website Functionality Credits The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
Acknowledgement This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.