Selected ATcT [1, 2] enthalpy of formation based on version 1.172 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.156 to include species relevant to a study of photodissociation of formamide[4].

Bromotrifluoromethane

Formula: CF3Br (g)
CAS RN: 75-63-8
ATcT ID: 75-63-8*0
SMILES: FC(F)(F)Br
SMILES: C(F)(F)(F)Br
InChI: InChI=1S/CBrF3/c2-1(3,4)5
InChIKey: RJCQBQGAPKAMLL-UHFFFAOYSA-N
Hills Formula: C1Br1F3

2D Image:

FC(F)(F)Br
Aliases: CF3Br; Bromotrifluoromethane; Bromo(trifluoro)methane; Monobromotrifluoromethane; Trifluorobromomethane; Trifluoromonobromomethane; Trifluoromethyl bromide; Methane bromide trifluoride; Methane trifluoride bromide; Methane monobromide trifluoride; Methane trifluoride monobromide; Carbon bromide trifluoride; Carbon trifluoride bromide; Carbon monobromide trifluoride; Carbon trifluoride monobromide; Bromotrifluorocarbon; Monobromotrifluorocarbon; Trifluorobromocarbon; Trifluoromonobromocarbon; Perfluoromethyl bromide; Bromofluoroform; Fluorocarbon 1301; FC 13B1; CFC 13B1; R 13B1; Daiflon 13B1; Flugex 13B1; Freon 13B1; Halon 1301
Relative Molecular Mass: 148.9099 ± 0.0013

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-638.64-650.76± 0.39kJ/mol

3D Image of CF3Br (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CF3Br (g)

The 20 contributors listed below account only for 53.2% of the provenance of ΔfH° of CF3Br (g).
A total of 179 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
9.46537.9 CF3CF3 (g) → 2 C (g) + 6 F (g) ΔrH°(0 K) = 769.97 ± 0.45 kcal/molKarton 2017
6.96541.2 CF3CF3 (g) Br2 (g) → 2 CF3Br (g) ΔrG°(670.8 K) = -1.58 ± 0.62 kJ/molCoomber 1967a, 3rd Law
3.36311.1 CHF3 (g) I2 (g) → CF3I (g) HI (g) ΔrH°(298.15 K) = 17.10 ± 0.34 kcal/molGoy 1967, as quoted by Cox 1970
3.36538.1 CF3CF3 (g) → 2 C (g) + 3 F2 (g) ΔrH°(0 K) = 2754.640 ± 3.2 kJ/molNagy 2014
3.36474.1 CF3Br (g) → [CF3]+ (g) Br (g) ΔrH°(0 K) = 12.087 ± 0.003 eVBodi 2011
3.06305.1 CF3Br (g) Cl2 (g) → CF3Cl (g) BrCl (g) ΔrH°(298.15 K) = -10.69 ± 0.30 kcal/molCoomber 1967b, as quoted by Cox 1970
2.96307.3 CHF3 (g) Br2 (g) → CF3Br (g) HBr (g) ΔrH°(298.15 K) = -4.59 ± 0.25 (×1.509) kcal/molCoomber 1967, as quoted by Cox 1970
2.16468.1 CF3 (g) → C (g) + 3/2 F2 (g) ΔrH°(0 K) = 1176.44 ± 1.6 kJ/molCsontos 2010
1.96549.1 CF3CF3 (g) → CF2CF2 (g) + 2 F (g) ΔrH°(0 K) = 195.99 ± 0.50 (×1.022) kcal/molKarton 2017
1.81108.2 Br2 (cr,l) → Br2 (g) ΔrH°(298.15 K) = 7.386 ± 0.027 kcal/molHildenbrand 1958
1.86463.11 CF3 (g) → C (g) + 3 F (g) ΔrH°(0 K) = 336.75 ± 0.4 kcal/molFeller 2008
1.76542.9 CF2CF2 (g) → 2 C (g) + 4 F (g) ΔrH°(0 K) = 573.98 ± 0.50 kcal/molKarton 2017
1.76448.4 CF4 (g) CF2Br2 (g) → 2 CF3Br (g) ΔrH°(0 K) = 3.35 ± 1.0 kcal/molRuscic G4
1.56306.1 CF3Cl (g) Br2 (g) → CF3Br (g) BrCl (g) ΔrH°(298.15 K) = 10.49 ± 0.40 (×1.044) kcal/molCoomber 1967b, as quoted by Cox 1970
1.46448.3 CF4 (g) CF2Br2 (g) → 2 CF3Br (g) ΔrH°(0 K) = 3.07 ± 1.1 kcal/molRuscic G3X
1.42153.1 CF3CF3 (g) + 2 NF3 (g) → 6 CF4 (g) N2 (g) ΔrH°(298.15 K) = -311.7 ± 3.0 kcal/molSinke 1966
1.36498.9 CF3 (g) → CF2 (g) F (g) ΔrH°(0 K) = 348.56 ± 1.6 kJ/molCsontos 2010
1.36463.12 CF3 (g) → C (g) + 3 F (g) ΔrH°(0 K) = 1408.3 ± 2.0 kJ/molGanyecz 2018, est unc
1.16504.1 CF (g) → [CF]+ (g) ΔrH°(0 K) = 9.128 ± 0.006 eVJacovella 2023
1.16307.1 CHF3 (g) Br2 (g) → CF3Br (g) HBr (g) ΔrH°(750 K) = -4.2 ± 0.6 kcal/molCorbett 1962

Top 10 species with enthalpies of formation correlated to the ΔfH° of CF3Br (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
82.5 IodotrifluoromethaneCF3I (g)C(F)(F)(F)I-583.20-589.11± 0.45kJ/mol195.91038 ±
0.00080
2314-97-8*0
81.3 Trifluoromethylium[CF3]+ (g)F[C+](F)F409.80406.59± 0.40kJ/mol69.00536 ±
0.00080
18851-76-8*0
74.4 HexafluoroethaneCF3CF3 (g)C(F)(F)(F)C(F)(F)F-1334.08-1342.38± 0.80kJ/mol138.0118 ±
0.0016
76-16-4*0
62.9 TetrafluoroethyleneCF2CF2 (g)C(F)(F)=C(F)(F)-670.68-674.08± 0.47kJ/mol100.0150 ±
0.0016
116-14-3*0
57.1 TrifluoromethylCF3 (g)F[C](F)F-465.15-467.95± 0.42kJ/mol69.00591 ±
0.00080
2264-21-3*0
33.6 1,1-DifluoroethaneCH3CHF2 (g)CC(F)F-489.02-502.74± 0.53kJ/mol66.0500 ±
0.0016
75-37-6*0
28.7 ChlorotrifluoromethaneCF3Cl (g)FC(F)(F)Cl-704.27-709.38± 0.56kJ/mol104.4586 ±
0.0012
75-72-9*0
25.9 FluoroformCHF3 (g)C(F)(F)F-689.29-696.24± 0.40kJ/mol70.01385 ±
0.00080
75-46-7*0
24.4 FluoroformCHF3 (l)C(F)(F)F-704.71± 0.42kJ/mol70.01385 ±
0.00080
75-46-7*590
20.1 TetrafluoromethaneCF4 (g)C(F)(F)(F)F-927.65-933.61± 0.23kJ/mol88.00431 ±
0.00080
75-73-0*0

Most Influential reactions involving CF3Br (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9246313.1 CF3Br (g) I2 (g) → CF3I (g) IBr (g) ΔrH°(298.15 K) = 9.55 ± 0.06 kcal/molLord 1967, as quoted by Cox 1970
0.7896541.2 CF3CF3 (g) Br2 (g) → 2 CF3Br (g) ΔrG°(670.8 K) = -1.58 ± 0.62 kJ/molCoomber 1967a, 3rd Law
0.6566474.1 CF3Br (g) → [CF3]+ (g) Br (g) ΔrH°(0 K) = 12.087 ± 0.003 eVBodi 2011
0.2226452.4 CF3Br (g) CBr4 (g) → CF2Br2 (g) CBr3F (g) ΔrH°(0 K) = 9.07 ± 1.0 kcal/molRuscic G4
0.2116305.1 CF3Br (g) Cl2 (g) → CF3Cl (g) BrCl (g) ΔrH°(298.15 K) = -10.69 ± 0.30 kcal/molCoomber 1967b, as quoted by Cox 1970
0.1836452.3 CF3Br (g) CBr4 (g) → CF2Br2 (g) CBr3F (g) ΔrH°(0 K) = 8.10 ± 1.1 kcal/molRuscic G3X
0.1406474.2 CF3Br (g) → [CF3]+ (g) Br (g) ΔrH°(0 K) = 12.095 ± 0.005 (×1.297) eVAsher 1997
0.1346449.4 CF4 (g) CBr3F (g) → CF2Br2 (g) CF3Br (g) ΔrH°(0 K) = 7.47 ± 1.0 kcal/molRuscic G4
0.1106449.3 CF4 (g) CBr3F (g) → CF2Br2 (g) CF3Br (g) ΔrH°(0 K) = 6.81 ± 1.1 kcal/molRuscic G3X
0.1096448.4 CF4 (g) CF2Br2 (g) → 2 CF3Br (g) ΔrH°(0 K) = 3.35 ± 1.0 kcal/molRuscic G4
0.1096306.1 CF3Cl (g) Br2 (g) → CF3Br (g) BrCl (g) ΔrH°(298.15 K) = 10.49 ± 0.40 (×1.044) kcal/molCoomber 1967b, as quoted by Cox 1970
0.0926307.3 CHF3 (g) Br2 (g) → CF3Br (g) HBr (g) ΔrH°(298.15 K) = -4.59 ± 0.25 (×1.509) kcal/molCoomber 1967, as quoted by Cox 1970
0.0906448.3 CF4 (g) CF2Br2 (g) → 2 CF3Br (g) ΔrH°(0 K) = 3.07 ± 1.1 kcal/molRuscic G3X
0.0866451.3 CF4 (g) CBr4 (g) → CF3Br (g) CBr3F (g) ΔrH°(0 K) = 11.18 ± 1.1 kcal/molRuscic G3X
0.0576451.4 CF4 (g) CBr4 (g) → CF3Br (g) CBr3F (g) ΔrH°(0 K) = 12.42 ± 1.0 (×1.354) kcal/molRuscic G4
0.0556483.3 CF3Br (g) → CF3 (g) Br (g) ΔrH°(298.15 K) = 70.8 ± 0.3 (×1.242) kcal/molRuscic 1998, Hranisavljevic 1998, Asher 1997
0.0546483.2 CF3Br (g) → CF3 (g) Br (g) ΔrH°(298.15 K) = 70.8 ± 0.2 (×1.874) kcal/molRuscic 1998, Skorobogatov 1996, Dymov 1991
0.0366307.1 CHF3 (g) Br2 (g) → CF3Br (g) HBr (g) ΔrH°(750 K) = -4.2 ± 0.6 kcal/molCorbett 1962
0.0216482.1 CF3Br (g) Br (g) → CF3 (g) Br2 (g) ΔrH°(298.15 K) = 24.9 ± 0.6 kcal/molRuscic 1998, Amphlett 1966
0.0146474.3 CF3Br (g) → [CF3]+ (g) Br (g) ΔrH°(0 K) = 12.07 ± 0.02 eVGarcia 2001


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.172 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   K. L. Caster, N. A. Seifert, B. Ruscic, A. W. Jasper, and K. Prozument,
Dynamics of HCN, NHC, and HNCO Formation in the 193 nm Photodissociation of Formamide
J. Phys. Chem. A (in press) (2024) [DOI: 10.1021/acs.jpca.4c02232]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.