Selected ATcT [1, 2] enthalpy of formation based on version 1.172 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.156 to include species relevant to a study of photodissociation of formamide[4].

Pyridine

Formula: N(CHCHCHCHCH) (g)
CAS RN: 110-86-1
ATcT ID: 110-86-1*0
SMILES: c1ccncc1
InChI: InChI=1S/C5H5N/c1-2-4-6-5-3-1/h1-5H
InChIKey: JUJWROOIHBZHMG-UHFFFAOYSA-N
Hills Formula: C5H5N1

2D Image:

c1ccncc1
Aliases: N(CHCHCHCHCH); Pyridine; Azabenzene; Azine; CP 32; NSC 141574; NSC 406123; C5NH5
Relative Molecular Mass: 79.0999 ± 0.0040

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
157.32140.52± 0.40kJ/mol

3D Image of N(CHCHCHCHCH) (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of N(CHCHCHCHCH) (g)

The 17 contributors listed below account for 90.5% of the provenance of ΔfH° of N(CHCHCHCHCH) (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
65.07382.1 N(CHCHCHCHCH) (cr,l) + 25/2 O2 (g) → 10 CO2 (g) + 5 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -1329.92 ± 0.20 kcal/molHubbard 1961
6.57383.1 N(CHCHCHCHCH) (cr,l) → N(CHCHCHCHCH) (g) ΔrH°(298.15 K) = 9.656 ± 0.04 kcal/molAndon 1957, est unc
5.07382.2 N(CHCHCHCHCH) (cr,l) + 25/2 O2 (g) → 10 CO2 (g) + 5 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -1330.01 ± 0.72 kcal/molCox 1954
2.27371.6 N(CHCHCHCHCH) (g) → 5 C (g) N (g) + 5 H (g) ΔrH°(0 K) = 1183.35 ± 0.60 kcal/molKarton 2009a
1.67383.2 N(CHCHCHCHCH) (cr,l) → N(CHCHCHCHCH) (g) ΔrH°(298.15 K) = 9.61 ± 0.08 kcal/molMcCullough 1957, ThermoData 2004
1.07376.5 N(CHCHCHCHCH) (g) HCCH (g) → C6H6 (g) HCN (g) ΔrH°(0 K) = -37.24 ± 0.85 kcal/molRuscic W1RO
0.97376.4 N(CHCHCHCHCH) (g) HCCH (g) → C6H6 (g) HCN (g) ΔrH°(0 K) = -37.93 ± 0.90 kcal/molRuscic CBS-n
0.97376.2 N(CHCHCHCHCH) (g) HCCH (g) → C6H6 (g) HCN (g) ΔrH°(0 K) = -37.07 ± 0.90 kcal/molRuscic G4
0.97376.1 N(CHCHCHCHCH) (g) HCCH (g) → C6H6 (g) HCN (g) ΔrH°(0 K) = -36.90 ± 0.90 kcal/molRuscic G3X
0.92228.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
0.87377.5 N(CHCHCHCHCH) (g) CH2CH2 (g) → C6H6 (g) CH2NH (g) ΔrH°(0 K) = -5.11 ± 0.9 kcal/molRuscic W1RO
0.77376.3 N(CHCHCHCHCH) (g) HCCH (g) → C6H6 (g) HCN (g) ΔrH°(0 K) = -36.92 ± 1.00 kcal/molRuscic CBS-n
0.77378.5 N(CHCHCHCHCH) (g) CH3CHCH2 (g) → C6H6 (g) CH3NCH2 (g) ΔrH°(0 K) = 0.81 ± 0.85 kcal/molRuscic W1RO
0.77383.3 N(CHCHCHCHCH) (cr,l) → N(CHCHCHCHCH) (g) ΔrH°(298.15 K) = 40.15 ± 0.50 kJ/molWinTable 2003, est unc
0.77377.4 N(CHCHCHCHCH) (g) CH2CH2 (g) → C6H6 (g) CH2NH (g) ΔrH°(0 K) = -5.07 ± 1.0 kcal/molRuscic CBS-n
0.77377.2 N(CHCHCHCHCH) (g) CH2CH2 (g) → C6H6 (g) CH2NH (g) ΔrH°(0 K) = -4.80 ± 1.0 kcal/molRuscic G4
0.67378.2 N(CHCHCHCHCH) (g) CH3CHCH2 (g) → C6H6 (g) CH3NCH2 (g) ΔrH°(0 K) = 0.81 ± 0.90 kcal/molRuscic G4

Top 10 species with enthalpies of formation correlated to the ΔfH° of N(CHCHCHCHCH) (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
93.4 PyridineN(CHCHCHCHCH) (cr,l)c1ccncc1102.22100.19± 0.38kJ/mol79.0999 ±
0.0040
110-86-1*500
66.0 Pyridiniumyl[N(CHCHCHCHCH)]+ (g)c1cc[n+]cc11051.311035.36± 0.61kJ/mol79.0994 ±
0.0040
16399-94-3*0
31.3 Pyridinium[NH(CHCHCHCHCH)]+ (g)c1cc[nH+]cc1761.7740.8± 1.3kJ/mol80.1073 ±
0.0040
16969-45-2*0
18.4 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.673± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
16.5 Carbon dioxideCO2 (g)C(=O)=O-393.111-393.478± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0
16.3 Carbon dioxide cation[CO2]+ (g)[C+](=O)=O936.089936.924± 0.017kJ/mol44.00895 ±
0.00100
12181-61-2*0
16.0 BenzeneC6H6 (g)c1ccccc1100.6883.17± 0.21kJ/mol78.1118 ±
0.0048
71-43-2*0
16.0 Benzene cation[C6H6]+ (g)c1ccc(cc1)[H+]992.57976.11± 0.21kJ/mol78.1113 ±
0.0048
34504-50-2*0
16.0 BenzeneC6H6 (cr,l)c1ccccc150.7749.23± 0.21kJ/mol78.1118 ±
0.0048
71-43-2*500
15.1 Benzoic acidC6H5C(O)OH (cr,l)c1ccc(cc1)C(=O)O-367.34-384.75± 0.17kJ/mol122.1213 ±
0.0056
65-85-0*500

Most Influential reactions involving N(CHCHCHCHCH) (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.8837372.1 N(CHCHCHCHCH) (g) → [N(CHCHCHCHCH)]+ (g) ΔrH°(0 K) = 9.266 ± 0.005 eVEl-Sayed 1961, est unc
0.7207383.1 N(CHCHCHCHCH) (cr,l) → N(CHCHCHCHCH) (g) ΔrH°(298.15 K) = 9.656 ± 0.04 kcal/molAndon 1957, est unc
0.4327373.5 [N(CHCHCHCHCH)]- (g) → N(CHCHCHCHCH) (g) ΔrH°(0 K) = -0.620 ± 0.050 eVRuscic W1RO
0.3607386.2 [NH(CHCHCHCHCH)]+ (g) NH3 (g) → N(CHCHCHCHCH) (g) [NH4]+ (g) ΔrG°(350 K) = 80.5 ± 2.0 kJ/molHunter 1998, Taft 1986, est unc
0.2907373.2 [N(CHCHCHCHCH)]- (g) → N(CHCHCHCHCH) (g) ΔrH°(0 K) = -0.535 ± 0.061 eVRuscic G4
0.1807383.2 N(CHCHCHCHCH) (cr,l) → N(CHCHCHCHCH) (g) ΔrH°(298.15 K) = 9.61 ± 0.08 kcal/molMcCullough 1957, ThermoData 2004
0.1497373.1 [N(CHCHCHCHCH)]- (g) → N(CHCHCHCHCH) (g) ΔrH°(0 K) = -0.603 ± 0.085 eVRuscic G3X
0.1287386.7 [NH(CHCHCHCHCH)]+ (g) NH3 (g) → N(CHCHCHCHCH) (g) [NH4]+ (g) ΔrH°(0 K) = 18.58 ± 0.8 kcal/molRuscic W1RO
0.1277373.3 [N(CHCHCHCHCH)]- (g) → N(CHCHCHCHCH) (g) ΔrH°(0 K) = -0.606 ± 0.092 eVRuscic CBS-n
0.1037385.5 [NH(CHCHCHCHCH)]+ (g) → N(CHCHCHCHCH) (g) H+ (g) ΔrH°(0 K) = 221.15 ± 0.90 kcal/molRuscic W1RO
0.1017379.9 N(CHCHCHCHCH) (g) → [CH2C(CHCH)]+ (g) HCN (g) ΔrH°(0 K) = 11.973 ± 0.040 eVRuscic W1RO
0.0827386.4 [NH(CHCHCHCHCH)]+ (g) NH3 (g) → N(CHCHCHCHCH) (g) [NH4]+ (g) ΔrH°(0 K) = 18.21 ± 1.0 kcal/molRuscic G4
0.0827386.6 [NH(CHCHCHCHCH)]+ (g) NH3 (g) → N(CHCHCHCHCH) (g) [NH4]+ (g) ΔrH°(0 K) = 18.06 ± 1.0 kcal/molRuscic CBS-n
0.0807383.3 N(CHCHCHCHCH) (cr,l) → N(CHCHCHCHCH) (g) ΔrH°(298.15 K) = 40.15 ± 0.50 kJ/molWinTable 2003, est unc
0.0617386.1 [NH(CHCHCHCHCH)]+ (g) NH3 (g) → N(CHCHCHCHCH) (g) [NH4]+ (g) ΔrH°(0 K) = 0.82 ± 0.05 eVChyall 1995
0.0577386.3 [NH(CHCHCHCHCH)]+ (g) NH3 (g) → N(CHCHCHCHCH) (g) [NH4]+ (g) ΔrH°(0 K) = 17.71 ± 1.2 kcal/molRuscic G3X
0.0487386.5 [NH(CHCHCHCHCH)]+ (g) NH3 (g) → N(CHCHCHCHCH) (g) [NH4]+ (g) ΔrH°(0 K) = 17.50 ± 1.3 kcal/molRuscic CBS-n
0.0447378.5 N(CHCHCHCHCH) (g) CH3CHCH2 (g) → C6H6 (g) CH3NCH2 (g) ΔrH°(0 K) = 0.81 ± 0.85 kcal/molRuscic W1RO
0.0397378.2 N(CHCHCHCHCH) (g) CH3CHCH2 (g) → C6H6 (g) CH3NCH2 (g) ΔrH°(0 K) = 0.81 ± 0.90 kcal/molRuscic G4
0.0397378.1 N(CHCHCHCHCH) (g) CH3CHCH2 (g) → C6H6 (g) CH3NCH2 (g) ΔrH°(0 K) = 1.05 ± 0.90 kcal/molRuscic G3X


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.172 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   K. L. Caster, N. A. Seifert, B. Ruscic, A. W. Jasper, and K. Prozument,
Dynamics of HCN, NHC, and HNCO Formation in the 193 nm Photodissociation of Formamide
J. Phys. Chem. A (in press) (2024) [DOI: 10.1021/acs.jpca.4c02232]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.