Selected ATcT [1, 2] enthalpy of formation based on version 1.172 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.156 to include species relevant to a study of photodissociation of formamide[4].

Hydrogen cyanide anion

Formula: [HCN]- (g)
CAS RN: 12334-27-9
ATcT ID: 12334-27-9*0
SMILES: [CH-]#N
InChI: InChI=1S/CHN/c1-2/h1H/q-1
InChIKey: ATBDVLSINHAXGY-UHFFFAOYSA-N
Hills Formula: C1H1N1-

2D Image:

[CH-]#N
Aliases: [HCN]-; Hydrogen cyanide anion; Hydrogen cyanide ion (1-); Azanidylidenemethyl; Hydrocyanic acid anion; Hydrocyanic acid ion (1-); HCN-; 11118-84-6
Relative Molecular Mass: 27.02593 ± 0.00081

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
129.526129.047± 0.087kJ/mol

3D Image of [HCN]- (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [HCN]- (g)

The 20 contributors listed below account only for 37.5% of the provenance of ΔfH° of [HCN]- (g).
A total of 298 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
4.52766.11 HCN (g) → HCCH (g) N2 (g) ΔrH°(0 K) = -30.43 ± 0.56 kJ/molHarding 2008
2.92766.9 HCN (g) → HCCH (g) N2 (g) ΔrH°(0 K) = -30.29 ± 0.70 kJ/molHarding 2008
2.92766.8 HCN (g) → HCCH (g) N2 (g) ΔrH°(0 K) = -30.73 ± 0.70 kJ/molTajti 2004, est unc
2.52766.10 HCN (g) → HCCH (g) N2 (g) ΔrH°(0 K) = -30.47 ± 0.74 kJ/molHarding 2008
2.12772.10 CO (g) NH3 (g) → HCN (g) H2O (g) ΔrH°(0 K) = 42.67 ± 0.56 kJ/molHarding 2008
2.02766.12 HCN (g) → HCCH (g) N2 (g) ΔrH°(0 K) = -30.22 ± 0.84 kJ/molHarding 2008
2.02766.14 HCN (g) → HCCH (g) N2 (g) ΔrH°(0 K) = -30.37 ± 0.84 kJ/molHarding 2008
1.82764.10 CO (g) NH3 (g) → HCN (g) CO2 (g) H2 (g) ΔrH°(0 K) = 2.37 ± 0.56 kJ/molHarding 2008
1.72770.10 HCN (g) N (g) → N2 (g) H (g) C (g) ΔrH°(0 K) = 327.05 ± 0.56 kJ/molHarding 2008
1.72286.9 C (graphite) CO2 (g) → 2 CO (g) ΔrG°(1165 K) = -33.545 ± 0.058 kJ/molSmith 1946, note COf, 3rd Law
1.62754.4 HCN (g) → H (g) C (g) N (g) ΔrH°(0 K) = 1268.59 ± 0.56 kJ/molHarding 2008
1.32772.8 CO (g) NH3 (g) → HCN (g) H2O (g) ΔrH°(0 K) = 42.74 ± 0.70 kJ/molHarding 2008
1.32772.7 CO (g) NH3 (g) → HCN (g) H2O (g) ΔrH°(0 K) = 42.89 ± 0.70 kJ/molTajti 2004, est unc
1.32766.7 HCN (g) → HCCH (g) N2 (g) ΔrH°(0 K) = -7.42 ± 0.25 kcal/molMartin 2006, Karton 2006
1.32766.5 HCN (g) → HCCH (g) N2 (g) ΔrH°(0 K) = -7.43 ± 0.25 kcal/molMartin 2006, Karton 2006
1.32766.6 HCN (g) → HCCH (g) N2 (g) ΔrH°(0 K) = -7.41 ± 0.25 kcal/molMartin 2006
1.22772.9 CO (g) NH3 (g) → HCN (g) H2O (g) ΔrH°(0 K) = 42.94 ± 0.74 kJ/molHarding 2008
1.12764.7 CO (g) NH3 (g) → HCN (g) CO2 (g) H2 (g) ΔrH°(0 K) = 2.39 ± 0.70 kJ/molTajti 2004, est unc
1.12764.8 CO (g) NH3 (g) → HCN (g) CO2 (g) H2 (g) ΔrH°(0 K) = 2.05 ± 0.70 kJ/molHarding 2008
1.12770.8 HCN (g) N (g) → N2 (g) H (g) C (g) ΔrH°(0 K) = 327.03 ± 0.70 kJ/molHarding 2008

Top 10 species with enthalpies of formation correlated to the ΔfH° of [HCN]- (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.8 Hydrogen cyanideHCN (g)C#N129.677129.293± 0.087kJ/mol27.02538 ±
0.00081
74-90-8*0
94.8 Cyanide[CN]- (g)[C-]#N63.97367.259± 0.091kJ/mol26.01799 ±
0.00080
57-12-5*0
47.9 NitrilomethylCN (g)[C]#N436.72440.01± 0.14kJ/mol26.01744 ±
0.00080
2074-87-5*0
46.2 AcetyleneHCCH (g)C#C228.86228.30± 0.12kJ/mol26.0373 ±
0.0016
74-86-2*0
46.2 Acetylene cation[HCCH]+ (g)C#[CH+]1328.881328.21± 0.12kJ/mol26.0367 ±
0.0016
25641-79-6*0
43.6 Hydrogen cyanide cation[HCN]+ (g)[CH+]#N1442.531442.06± 0.20kJ/mol27.02483 ±
0.00081
12601-62-6*0
36.3 Ethynylium[CCH]+ (g)C#[C+]1687.621690.95± 0.15kJ/mol25.0288 ±
0.0016
16456-59-0*0
33.0 CarbonC (g)[C]711.381716.866± 0.039kJ/mol12.01070 ±
0.00080
7440-44-0*0
33.0 CarbonC (g, triplet)[C]711.381716.866± 0.039kJ/mol12.01070 ±
0.00080
7440-44-0*1
33.0 Carbon cationC+ (g)[C+]1797.8341803.432± 0.039kJ/mol12.01015 ±
0.00080
14067-05-1*0

Most Influential reactions involving [HCN]- (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.7312756.2 [HCN]- (g) → HCN (g) ΔrH°(0 K) = 0.001565 ± 0.00005 eVArd 2009, est unc
0.1822756.4 [HCN]- (g) → HCN (g) ΔrH°(0 K) = 0.0015601 ± 0.0001 eVGarrett 2010, est unc
0.0452756.3 [HCN]- (g) → HCN (g) ΔrH°(0 K) = 0.001646 ± 0.0002 eVArd 2009, est unc
0.0292756.5 [HCN]- (g) → HCN (g) ΔrH°(0 K) = 13.2 ± 2 cm-1Peterson 2002, est unc
0.0042756.8 [HCN]- (g) → HCN (g) ΔrH°(0 K) = 14.56 ± 5 cm-1Sindelka 2004, est unc
0.0042756.6 [HCN]- (g) → HCN (g) ΔrH°(0 K) = 9.9 ± 5 cm-1Skurski 2001, est unc
0.0002756.7 [HCN]- (g) → HCN (g) ΔrH°(0 K) = 12.3 ± 15 cm-1Wang 2001b, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.172 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   K. L. Caster, N. A. Seifert, B. Ruscic, A. W. Jasper, and K. Prozument,
Dynamics of HCN, NHC, and HNCO Formation in the 193 nm Photodissociation of Formamide
J. Phys. Chem. A (in press) (2024) [DOI: 10.1021/acs.jpca.4c02232]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.