Selected ATcT [1, 2] enthalpy of formation based on version 1.172 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.156 to include species relevant to a study of photodissociation of formamide[4].

1,2-Diphenylethane

Formula: C6H5CH2CH2C6H5 (g)
CAS RN: 103-29-7
ATcT ID: 103-29-7*0
SMILES: c1ccccc1CCc2ccccc2
InChI: InChI=1S/C14H14/c1-3-7-13(8-4-1)11-12-14-9-5-2-6-10-14/h1-10H,11-12H2
InChIKey: QWUWMCYKGHVNAV-UHFFFAOYSA-N
Hills Formula: C14H14

2D Image:

c1ccccc1CCc2ccccc2
Aliases: C6H5CH2CH2C6H5; 1,2-Diphenylethane; Bibenzyl; Dibenzyl; 1,1'-(1,2-ethanediyl)bisbenzene; sym-Diphenylethane; s-Diphenylethane; (Phenylethyl)benzene; Dihydrostilbene; NSC 30686; 1,1'-(1,2-Ethanediyl)dibenzene
Relative Molecular Mass: 182.2610 ± 0.0112

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
180.68142.20± 0.76kJ/mol

3D Image of C6H5CH2CH2C6H5 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of C6H5CH2CH2C6H5 (g)

The 8 contributors listed below account for 90.1% of the provenance of ΔfH° of C6H5CH2CH2C6H5 (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
44.19140.4 C6H5CH2CH2C6H5 (cr,l) + 35/2 O2 (g) → 14 CO2 (g) + 7 H2O (cr,l) ΔrH°(298.15 K) = -7559.6 ± 1 kJ/molCoops 1953, Cox 1970
37.29140.1 C6H5CH2CH2C6H5 (cr,l) + 35/2 O2 (g) → 14 CO2 (g) + 7 H2O (cr,l) ΔrH°(298.15 K) = -1807.22 ± 0.26 kcal/molColeman 1966
2.29139.1 C6H5CH2CH2C6H5 (g) → 2 C6H5CH2 (g) ΔrG°(1200 K) = 82.5 ± 4 kJ/molHippler 1990, Muller-Markgraf 1988, 3rd Law, est unc
2.12228.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
1.29141.4 C6H5CH2CH2C6H5 (cr,l) → C6H5CH2CH2C6H5 (g) ΔrH°(370 K) = 63.90 ± 0.10 kJ/molMesserly 1988, note unc2
1.29140.2 C6H5CH2CH2C6H5 (cr,l) + 35/2 O2 (g) → 14 CO2 (g) + 7 H2O (cr,l) ΔrH°(298.15 K) = -1805.57 ± 0.72 (×1.957) kcal/molParks 1946
0.9125.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.82228.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d

Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H5CH2CH2C6H5 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.2 1,2-DiphenylethaneC6H5CH2CH2C6H5 (cr,l)c1ccccc1CCc2ccccc284.7951.04± 0.75kJ/mol182.2610 ±
0.0112
103-29-7*500
27.4 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.673± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
24.6 Carbon dioxideCO2 (g)C(=O)=O-393.111-393.478± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0
24.4 Carbon dioxide cation[CO2]+ (g)[C+](=O)=O936.089936.924± 0.017kJ/mol44.00895 ±
0.00100
12181-61-2*0
22.6 Benzoic acidC6H5C(O)OH (cr,l)c1ccc(cc1)C(=O)O-367.34-384.75± 0.17kJ/mol122.1213 ±
0.0056
65-85-0*500
22.4 Succinic acid(CH2C(O)OH)2 (cr,l)OC(=O)CCC(=O)O-918.50-940.23± 0.12kJ/mol118.0880 ±
0.0034
110-15-6*500
19.7 Carbon dioxideCO2 (aq, undissoc)C(=O)=O-412.868± 0.018kJ/mol44.00950 ±
0.00100
124-38-9*1000
19.5 Benzoic acidC6H5C(O)OH (g)c1ccc(cc1)C(=O)O-274.35-294.14± 0.19kJ/mol122.1213 ±
0.0056
65-85-0*0
19.5 Hydrogen carbonate[HOC(O)O]- (aq)O[C](=O)[O-]-689.868± 0.039kJ/mol61.0174 ±
0.0012
71-52-3*800
18.2 WaterH2O (cr,l)O-286.276-285.804± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*500

Most Influential reactions involving C6H5CH2CH2C6H5 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.8909141.4 C6H5CH2CH2C6H5 (cr,l) → C6H5CH2CH2C6H5 (g) ΔrH°(370 K) = 63.90 ± 0.10 kJ/molMesserly 1988, note unc2
0.0859139.1 C6H5CH2CH2C6H5 (g) → 2 C6H5CH2 (g) ΔrG°(1200 K) = 82.5 ± 4 kJ/molHippler 1990, Muller-Markgraf 1988, 3rd Law, est unc
0.0469141.6 C6H5CH2CH2C6H5 (cr,l) → C6H5CH2CH2C6H5 (g) ΔrH°(373.31 K) = 15.33 ± 0.10 (×1.044) kcal/molSasse 1989, est unc
0.0429141.1 C6H5CH2CH2C6H5 (cr,l) → C6H5CH2CH2C6H5 (g) ΔrH°(298.15 K) = 21.84 ± 0.11 kcal/molMorawetz 1972
0.0309139.3 C6H5CH2CH2C6H5 (g) → 2 C6H5CH2 (g) ΔrH°(0 K) = 67.13 ± 1.60 kcal/molRuscic G4
0.0189141.2 C6H5CH2CH2C6H5 (cr,l) → C6H5CH2CH2C6H5 (g) ΔrH°(298.15 K) = 91.5 ± 0.7 kJ/molOsborn 1980
0.0169139.4 C6H5CH2CH2C6H5 (g) → 2 C6H5CH2 (g) ΔrH°(0 K) = 68.25 ± 2.16 kcal/molRuscic CBS-n
0.0079139.5 C6H5CH2CH2C6H5 (g) → 2 C6H5CH2 (g) ΔrH°(0 K) = 70.01 ± 1.60 (×2) kcal/molRuscic CBS-n
0.0039139.2 C6H5CH2CH2C6H5 (g) → 2 C6H5CH2 (g) ΔrH°(1200 K) = 258 ± 20 (×1.022) kJ/molHippler 1990, Muller-Markgraf 1988, 2nd Law, est unc
0.0019141.5 C6H5CH2CH2C6H5 (cr,l) → C6H5CH2CH2C6H5 (g) ΔrH°(308.42 K) = 22.20 ± 0.10 (×5.187) kcal/molSasse 1989, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.172 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   K. L. Caster, N. A. Seifert, B. Ruscic, A. W. Jasper, and K. Prozument,
Dynamics of HCN, NHC, and HNCO Formation in the 193 nm Photodissociation of Formamide
J. Phys. Chem. A (in press) (2024) [DOI: 10.1021/acs.jpca.4c02232]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.