Selected ATcT [1, 2] enthalpy of formation based on version 1.172 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.156 to include species relevant to a study of photodissociation of formamide[4].

Hydrazoic acid

Formula: HNNN (aq)
CAS RN: 7782-79-8
ATcT ID: 7782-79-8*800
SMILES: N=[N+]=[N-]
InChI: InChI=1S/HN3/c1-3-2/h1H
InChIKey: JUINSXZKUKVTMD-UHFFFAOYSA-N
Hills Formula: H1N3

2D Image:

N=[N+]=[N-]
Aliases: HNNN; Hydrazoic acid; Hydrogen azide; Azidic acid; Azoimide; Diazoimide; Hydronitric acid; Triazoic acid; NNNH
Relative Molecular Mass: 43.02816 ± 0.00022

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
272.69± 0.47kJ/mol

Top contributors to the provenance of ΔfH° of HNNN (aq)

The 20 contributors listed below account only for 87.7% of the provenance of ΔfH° of HNNN (aq).
A total of 28 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
29.02133.1 [NNN]- (aq) [I3]- (aq) → 3 N2 (g) + 3 I- (aq) ΔrH°(298.15 K) = -158.78 ± 0.2 kcal/molGray 1956
19.51357.1 I2 (cr,l) I- (aq) → [I3]- (aq) ΔrH°(298.15 K) = 1.338 ± 0.256 kcal/molWu 1963
9.71356.1 Br2 (cr,l) + 3 I- (aq) → [I3]- (aq) + 2 Br- (aq) ΔrH°(298.15 K) = -29.355 ± 0.364 kcal/molWu 1963
8.72112.11 HNNN (g) → H (g) + 3 N (g) ΔrH°(0 K) = 318.06 ± 0.30 kcal/molKarton 2011
3.12130.2 HNNN (g) → HNNN (aq, undissoc) ΔrG°(298.15 K) = -1.5 ± 0.1 kcal/molD'Orazio 1963, as quoted by NBS Tables
3.12130.1 HNNN (g) → HNNN (aq, undissoc) ΔrH°(298.15 K) = -8.1 ± 0.1 kcal/molD'Orazio 1963, as quoted by NBS Tables
2.62119.1 HNNN (g) → 1/2 H2 (g) + 3/2 N2 (g) ΔrH°(285.6 K) = -70.3 ± 0.5 (×1.091) kcal/molGunther 1935, apud Gurvich TPIS, as quoted by NBS Tables
2.52112.10 HNNN (g) → H (g) + 3 N (g) ΔrH°(0 K) = 317.83 ± 0.56 kcal/molKarton 2011
1.92120.1 HNNN (g) → H (g) NNN (g) ΔrH°(0 K) = 30970 ± 50 cm-1Cook 1999
1.52112.13 HNNN (g) → H (g) + 3 N (g) ΔrH°(0 K) = 1330.1 ± 3.0 kJ/molKlopper 2010a
1.11358.1 Cl2 (g) + 3 I- (aq) → 2 Cl- (aq) [I3]- (aq) ΔrH°(298.15 K) = -51.5 ± 1.1 kcal/molWartenberg 1930, Wartenberg 1931, Parker 1965
1.02131.2 HNNN (aq, undissoc) → HNNN (aq) ΔrH°(298.15 K) = 3.60 ± 0.05 kcal/molGray 1956
0.52112.12 HNNN (g) → H (g) + 3 N (g) ΔrH°(0 K) = 316.66 ± 1 (×1.189) kcal/molGutowski 2006
0.41445.11 NNN (g) → N2 (g) N (g) ΔrH°(0 K) = 4.00 ± 1.0 kcal/molDixon 2004
0.41440.9 NNN (g) → 3 N (g) ΔrH°(0 K) = 228.34 ± 1.0 kcal/molDixon 2004
0.42120.2 HNNN (g) → H (g) NNN (g) ΔrH°(0 K) = 30920 ± 100 cm-1Yuan 2008
0.41304.1 HI (g) → HI (aq, 5130 H2O) ΔrH°(298.15 K) = -19.862 ± 0.020 kcal/molVanderzee 1974
0.42112.9 HNNN (g) → H (g) + 3 N (g) ΔrH°(0 K) = 317.09 ± 1.35 kcal/molKarton 2011
0.32112.8 HNNN (g) → H (g) + 3 N (g) ΔrH°(0 K) = 317.66 ± 1.50 kcal/molRuscic W1RO
0.31446.4 NNN (g) CO (g) [O2]+ (g) → [CO2]+ (g) N2 (g) NO (g) ΔrH°(0 K) = -114.03 ± 1.2 kcal/molRuscic W1RO

Top 10 species with enthalpies of formation correlated to the ΔfH° of HNNN (aq)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 Azide[NNN]- (aq)[N]N=[N-]272.69± 0.47kJ/mol42.02077 ±
0.00021
14343-69-2*800
94.5 Hydrazoic acidHNNN (aq, undissoc)N=[N+]=[N-]257.70± 0.48kJ/mol43.02816 ±
0.00022
7782-79-8*1000
78.0 Hydrazoic acidHNNN (g)N=[N+]=[N-]297.99291.69± 0.48kJ/mol43.02816 ±
0.00022
7782-79-8*0
58.8 Hydrazoic acidHNNN (cr,l)N=[N+]=[N-]261.57± 0.64kJ/mol43.02816 ±
0.00022
7782-79-8*500
49.7 Azido radicalNNN (g)[N]N=[N]452.38449.79± 0.59kJ/mol42.02022 ±
0.00021
12596-60-0*0
43.5 Hydrazoic acid cation[HNNN]+ (g)N=[N+]=[N]1333.731328.06± 0.82kJ/mol43.02761 ±
0.00022
58852-14-5*0
27.8 Trinitrogen cation[NNN]+ (g)[N]N=[N+]1519.591516.96± 0.89kJ/mol42.01967 ±
0.00021
12185-03-4*0
26.7 Azide[NNN]- (g)[N]N=[N-]193.63190.13± 0.91kJ/mol42.02077 ±
0.00021
14343-69-2*0
19.0 Cyanic azideNCNNN (g)N#CN=[N+]=[N-]502.8498.3± 1.9kJ/mol68.03766 ±
0.00085
764-05-6*0
-59.1 Triiodide[I3]- (aq)I[I-]I-51.53± 0.79kJ/mol380.713959 ±
0.000090
14900-04-0*800

Most Influential reactions involving HNNN (aq)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0002132.1 HNNN (aq) → [NNN]- (aq) H+ (aq) ΔrH°(298.15 K) = 0.000 ± 0.000 kJ/moltriv
0.5552131.2 HNNN (aq, undissoc) → HNNN (aq) ΔrH°(298.15 K) = 3.60 ± 0.05 kcal/molGray 1956
0.1392131.1 HNNN (aq, undissoc) → HNNN (aq) ΔrH°(298.15 K) = 3.6 ± 0.1 kcal/molD'Orazio 1963, as quoted by NBS Tables
0.1392131.4 HNNN (aq, undissoc) → HNNN (aq) ΔrG°(298.15 K) = 6.3 ± 0.1 kcal/molD'Orazio 1963, as quoted by NBS Tables
0.1392131.5 HNNN (aq, undissoc) → HNNN (aq) ΔrG°(298.15 K) = 6.2 ± 0.1 kcal/molQuintin 1940, Gray 1956


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.172 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   K. L. Caster, N. A. Seifert, B. Ruscic, A. W. Jasper, and K. Prozument,
Dynamics of HCN, NHC, and HNCO Formation in the 193 nm Photodissociation of Formamide
J. Phys. Chem. A (in press) (2024) [DOI: 10.1021/acs.jpca.4c02232]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.