Selected ATcT [1, 2] enthalpy of formation based on version 1.156 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.148 to include species relevant to a recent study of the oxidation of ethylene [4] as well as new measurements that led to refining the thermochemistry of CF and SiF and their cations [5].
|
Propynylidene |
Formula: HCCCH (g, cis singlet) |
CAS RN: 67152-18-5 |
ATcT ID: 67152-18-5*3 |
SMILES: [CH]=C=[CH] |
SMILES: C#C[CH] |
InChI: InChI=1S/C3H2/c1-3-2/h1-2H |
InChIKey: OUSWHEMIRJJMAW-UHFFFAOYSA-N |
Hills Formula: C3H2 |
2D Image: |
|
Aliases: HCCCH; Propynylidene; 1,2-Propadiene-1,3-diyl; CHCCH; HC=C=CH; CH=C=CH; 2008-19-7; Propargylene; Propargylene radical; 2-Propynylidene; 2-Propyn-1-ylidene; HC-C~CH; HC~C-CH; CH-C~CH; CH~C-CH |
Relative Molecular Mass: 38.0480 ± 0.0024 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
597.9 | 599.6 | ± 1.2 | kJ/mol |
|
3D Image of HCCCH (g, cis singlet) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of HCCCH (g, cis singlet)The 20 contributors listed below account only for 77.2% of the provenance of ΔfH° of HCCCH (g, cis singlet). A total of 61 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 6.1 | 3582.7 | HCCCH (g, triplet) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 53.81 ± 4 kJ/mol | Aguilera-Iparraguirre 2008, est unc | 5.7 | 3590.1 | [HCCCH]- (g, transoid 2B) + HCCCH (g, triplet) → [HCCCH]- (g, cisoid 2A) + HCCCH (g, trans singlet)  | ΔrH°(0 K) = 0.583 ± 0.010 eV | Osborn 2014 | 5.0 | 3608.5 | HCCCH (g, cis singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.53 ± 1.2 kcal/mol | Ruscic W1RO | 4.4 | 3589.4 | [HCCCH]- (g, transoid 2B) + HCCCH (g, cis singlet) → HCCCH (g, trans singlet) + [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 227 ± 300 cm-1 | Ruscic W1RO | 4.3 | 3608.2 | HCCCH (g, cis singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.43 ± 1.3 kcal/mol | Ruscic G4 | 4.1 | 3589.2 | [HCCCH]- (g, transoid 2B) + HCCCH (g, cis singlet) → HCCCH (g, trans singlet) + [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 220 ± 310 cm-1 | Ruscic G4 | 4.1 | 3569.5 | [HCCCH]- (g, cisoid 2A) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 1.681 ± 0.050 eV | Ruscic W1RO | 4.0 | 3589.1 | [HCCCH]- (g, transoid 2B) + HCCCH (g, cis singlet) → HCCCH (g, trans singlet) + [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 221 ± 315 cm-1 | Ruscic G3X | 3.9 | 3584.4 | HCCCH (g, cis singlet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 1 ± 300 cm-1 | Ruscic W1RO | 3.8 | 3582.5 | HCCCH (g, triplet) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 4924 ± 420 cm-1 | Ruscic W1RO | 3.7 | 3608.1 | HCCCH (g, cis singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.49 ± 1.4 kcal/mol | Ruscic G3X | 3.7 | 3584.2 | HCCCH (g, cis singlet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 35 ± 310 cm-1 | Ruscic G4 | 3.6 | 3584.1 | HCCCH (g, cis singlet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 6 ± 315 cm-1 | Ruscic G3X | 3.3 | 3582.2 | HCCCH (g, triplet) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 4156 ± 450 cm-1 | Ruscic G4 | 3.2 | 3589.3 | [HCCCH]- (g, transoid 2B) + HCCCH (g, cis singlet) → HCCCH (g, trans singlet) + [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 220 ± 350 cm-1 | Ruscic CBS-n | 2.9 | 3584.3 | HCCCH (g, cis singlet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 5 ± 350 cm-1 | Ruscic CBS-n | 2.8 | 3608.3 | HCCCH (g, cis singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.95 ± 1.6 kcal/mol | Ruscic CBS-n | 2.8 | 3582.1 | HCCCH (g, triplet) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 4287 ± 490 cm-1 | Ruscic G3X | 2.7 | 3569.2 | [HCCCH]- (g, cisoid 2A) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 1.678 ± 0.061 eV | Ruscic G4 | 2.1 | 3582.3 | HCCCH (g, triplet) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 4967 ± 560 cm-1 | Ruscic CBS-n |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of HCCCH (g, cis singlet) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 100.0 | Propynylidene | HCCCH (g, singlet) | | 597.9 | 599.6 | ± 1.2 | kJ/mol | 38.0480 ± 0.0024 | 67152-18-5*2 | 44.6 | Propynylidene | HCCCH (g, trans singlet) | | 597.6 | 599.4 | ± 1.1 | kJ/mol | 38.0480 ± 0.0024 | 67152-18-5*4 | 36.2 | Propynylidene | HCCCH (g, triplet) | | 543.73 | 546.73 | ± 0.58 | kJ/mol | 38.0480 ± 0.0024 | 67152-18-5*1 | 36.2 | Propynylidene | HCCCH (g) | | 543.73 | 546.73 | ± 0.58 | kJ/mol | 38.0480 ± 0.0024 | 67152-18-5*0 | 24.1 | Propargylenide | [HCCCH]- (g) | | 434.5 | 437.7 | ± 1.1 | kJ/mol | 38.0485 ± 0.0024 | 82906-05-6*0 | 24.1 | Propargylenide | [HCCCH]- (g, transoid 2B) | | 434.5 | 437.0 | ± 1.1 | kJ/mol | 38.0485 ± 0.0024 | 82906-05-6*1 | 23.4 | Propynylidene cation | [HCCCH]+ (g) | | 1409.62 | 1412.18 | ± 0.83 | kJ/mol | 38.0474 ± 0.0024 | 75123-91-0*0 | 20.7 | Propargylenide | [HCCCH]- (g, cisoid 2A) | | 437.0 | 439.5 | ± 1.1 | kJ/mol | 38.0485 ± 0.0024 | 82906-05-6*2 | 16.9 | Propadienylidene | CH2CC (g) | | 554.47 | 555.61 | ± 0.39 | kJ/mol | 38.0480 ± 0.0024 | 60731-10-4*0 | 16.5 | Propadienylidenide | [CH2CC]- (g) | | 381.20 | 382.10 | ± 0.40 | kJ/mol | 38.0485 ± 0.0024 | 109292-49-1*0 |
|
Most Influential reactions involving HCCCH (g, cis singlet)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 1.000 | 3581.1 | HCCCH (g, singlet) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 0.00 ± 0.00 cm-1 | Ruscic W1RO, Ruscic G4 | 0.112 | 3584.4 | HCCCH (g, cis singlet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 1 ± 300 cm-1 | Ruscic W1RO | 0.105 | 3584.2 | HCCCH (g, cis singlet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 35 ± 310 cm-1 | Ruscic G4 | 0.101 | 3584.1 | HCCCH (g, cis singlet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 6 ± 315 cm-1 | Ruscic G3X | 0.095 | 3589.4 | [HCCCH]- (g, transoid 2B) + HCCCH (g, cis singlet) → HCCCH (g, trans singlet) + [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 227 ± 300 cm-1 | Ruscic W1RO | 0.089 | 3589.2 | [HCCCH]- (g, transoid 2B) + HCCCH (g, cis singlet) → HCCCH (g, trans singlet) + [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 220 ± 310 cm-1 | Ruscic G4 | 0.086 | 3589.1 | [HCCCH]- (g, transoid 2B) + HCCCH (g, cis singlet) → HCCCH (g, trans singlet) + [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 221 ± 315 cm-1 | Ruscic G3X | 0.086 | 3569.5 | [HCCCH]- (g, cisoid 2A) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 1.681 ± 0.050 eV | Ruscic W1RO | 0.082 | 3584.3 | HCCCH (g, cis singlet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 5 ± 350 cm-1 | Ruscic CBS-n | 0.079 | 3582.7 | HCCCH (g, triplet) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 53.81 ± 4 kJ/mol | Aguilera-Iparraguirre 2008, est unc | 0.070 | 3589.3 | [HCCCH]- (g, transoid 2B) + HCCCH (g, cis singlet) → HCCCH (g, trans singlet) + [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 220 ± 350 cm-1 | Ruscic CBS-n | 0.058 | 3569.2 | [HCCCH]- (g, cisoid 2A) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 1.678 ± 0.061 eV | Ruscic G4 | 0.056 | 3608.5 | HCCCH (g, cis singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.53 ± 1.2 kcal/mol | Ruscic W1RO | 0.050 | 3582.5 | HCCCH (g, triplet) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 4924 ± 420 cm-1 | Ruscic W1RO | 0.048 | 3608.2 | HCCCH (g, cis singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.43 ± 1.3 kcal/mol | Ruscic G4 | 0.043 | 3582.2 | HCCCH (g, triplet) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 4156 ± 450 cm-1 | Ruscic G4 | 0.041 | 3608.1 | HCCCH (g, cis singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.49 ± 1.4 kcal/mol | Ruscic G3X | 0.036 | 3582.1 | HCCCH (g, triplet) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 4287 ± 490 cm-1 | Ruscic G3X | 0.031 | 3608.3 | HCCCH (g, cis singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.95 ± 1.6 kcal/mol | Ruscic CBS-n | 0.029 | 3569.1 | [HCCCH]- (g, cisoid 2A) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 1.638 ± 0.085 eV | Ruscic G3X |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.156 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
N. A. Seifert, B. Ruscic, R. Sivaramakrishnan, and K. Prozument,
The C2H4O Isomers in the Oxidation of Ethylene
J. Mol. Spectrosc. 398, 111847/1-8 (2023)
[DOI: 10.1016/j.jms.2023.111847]
|
5
|
|
U. Jacovella, B. Ruscic, N. L. Chen, H.-L. Le, S. Boyé-Péronne, S. Hartweg, M. Roy-Chowdhury, G. A. Garcia, J.-C. Loison, and B. Gans,
Refining Thermochemical Properties of CF, SiF, and Their Cations by Combining Photoelectron Spectroscopy, Quantum Chemical Calculations, and the Active Thermochemical Tables Approach
Phys. Chem. Chem. Phys. 25, 30838-30847 (2023)
[DOI: 10.1039/D3CP04244H]
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
7
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6] and Ruscic and Bross[7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|