Selected ATcT [1, 2] enthalpy of formation based on version 1.156 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.148 to include species relevant to a recent study of the oxidation of ethylene [4] as well as new measurements that led to refining the thermochemistry of CF and SiF and their cations [5].

Dinitrogen cation

Formula: [N2]+ (g)
CAS RN: 13966-04-6
ATcT ID: 13966-04-6*0
SMILES: N#[N+]
InChI: InChI=1S/N2/c1-2/q+1
InChIKey: OCLMUTJUZGFVFC-UHFFFAOYSA-N
Hills Formula: N2+

2D Image:

N#[N+]
Aliases: [N2]+; Dinitrogen cation; Dinitrogen ion (1+); Nitrogen molecule cation; Nitrogen molecule ion (1+); Nitrogen cation; Nitrogen ion (1+); Molecular nitrogen cation; Molecular nitrogen ion (1+); Diatomic nitrogen cation; Diatomic nitrogen ion (1+)
Relative Molecular Mass: 28.01293 ± 0.00014

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
1503.3111503.312± 0.000kJ/mol

3D Image of [N2]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [N2]+ (g)

The 3 contributors listed below account for 99.8% of the provenance of ΔfH° of [N2]+ (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
70.61401.1 N2 (g) → [N2]+ (g) ΔrH°(0 K) = 125667.028 ± 0.030 cm-1Seiler 2001, note unc
15.01401.2 N2 (g) → [N2]+ (g) ΔrH°(0 K) = 125667.032 ± 0.065 cm-1Huber 1990
14.11401.3 N2 (g) → [N2]+ (g) ΔrH°(0 K) = 125666.959 ± 0.067 cm-1Trickl 1989


Most Influential reactions involving [N2]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.7061401.1 N2 (g) → [N2]+ (g) ΔrH°(0 K) = 125667.028 ± 0.030 cm-1Seiler 2001, note unc
0.1501401.2 N2 (g) → [N2]+ (g) ΔrH°(0 K) = 125667.032 ± 0.065 cm-1Huber 1990
0.1411401.3 N2 (g) → [N2]+ (g) ΔrH°(0 K) = 125666.959 ± 0.067 cm-1Trickl 1989
0.1221468.2 [NNNN]+ (g) → N2 (g) [N2]+ (g) ΔrG°(720 K) = 10.7 ± 1.0 kcal/molHiraoka 1988, 3rd Law, est unc
0.0631423.2 [N2]+ (g) → N+ (g) N (g) ΔrH°(0 K) = 70248 ± 12 (×1.189) cm-1Hertzler 1992, Douglas 1952, Hertzler 1990, Janin 1957, est unc
0.0541468.11 [NNNN]+ (g) → N2 (g) [N2]+ (g) ΔrH°(0 K) = 27.61 ± 1.50 kcal/molRuscic W1RO
0.0541468.1 [NNNN]+ (g) → N2 (g) [N2]+ (g) ΔrH°(720 K) = 25.8 ± 1.5 kcal/molHiraoka 1988, 2nd Law
0.0471468.8 [NNNN]+ (g) → N2 (g) [N2]+ (g) ΔrH°(0 K) = 25.60 ± 1.60 kcal/molRuscic G4
0.0411468.7 [NNNN]+ (g) → N2 (g) [N2]+ (g) ΔrH°(0 K) = 25.42 ± 1.72 kcal/molRuscic G3X
0.0271468.5 [NNNN]+ (g) → N2 (g) [N2]+ (g) ΔrH°(723 K) = 24.4 ± 2.1 kcal/molTeng 1973, 2nd Law
0.0261468.10 [NNNN]+ (g) → N2 (g) [N2]+ (g) ΔrH°(0 K) = 28.53 ± 1.60 (×1.354) kcal/molRuscic CBS-n
0.0191434.4 [NNN]+ (g) [CO]+ (g) [O2]+ (g) → [CO2]+ (g) [N2]+ (g) [NO]+ (g) ΔrH°(0 K) = -118.56 ± 1.50 kcal/molRuscic W1RO
0.0191435.4 [NNN]+ (g) [CO]+ (g) O+ (g) → [CO2]+ (g) [N2]+ (g) N+ (g) ΔrH°(0 K) = -0.12 ± 1.50 kcal/molRuscic W1RO
0.0171434.2 [NNN]+ (g) [CO]+ (g) [O2]+ (g) → [CO2]+ (g) [N2]+ (g) [NO]+ (g) ΔrH°(0 K) = -119.93 ± 1.60 kcal/molRuscic G4
0.0171435.3 [NNN]+ (g) [CO]+ (g) O+ (g) → [CO2]+ (g) [N2]+ (g) N+ (g) ΔrH°(0 K) = -2.38 ± 1.60 kcal/molRuscic CBS-n
0.0171435.2 [NNN]+ (g) [CO]+ (g) O+ (g) → [CO2]+ (g) [N2]+ (g) N+ (g) ΔrH°(0 K) = -1.93 ± 1.60 kcal/molRuscic G4
0.0151468.9 [NNNN]+ (g) → N2 (g) [N2]+ (g) ΔrH°(0 K) = 29.17 ± 2.16 (×1.297) kcal/molRuscic CBS-n
0.0151434.3 [NNN]+ (g) [CO]+ (g) [O2]+ (g) → [CO2]+ (g) [N2]+ (g) [NO]+ (g) ΔrH°(0 K) = -120.84 ± 1.60 (×1.067) kcal/molRuscic CBS-n
0.0151434.1 [NNN]+ (g) [CO]+ (g) [O2]+ (g) → [CO2]+ (g) [N2]+ (g) [NO]+ (g) ΔrH°(0 K) = -120.17 ± 1.72 kcal/molRuscic G3X
0.0151435.1 [NNN]+ (g) [CO]+ (g) O+ (g) → [CO2]+ (g) [N2]+ (g) N+ (g) ΔrH°(0 K) = -1.72 ± 1.72 kcal/molRuscic G3X


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.156 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   N. A. Seifert, B. Ruscic, R. Sivaramakrishnan, and K. Prozument,
The C2H4O Isomers in the Oxidation of Ethylene
J. Mol. Spectrosc. 398, 111847/1-8 (2023) [DOI: 10.1016/j.jms.2023.111847]
5   U. Jacovella, B. Ruscic, N. L. Chen, H.-L. Le, S. Boyé-Péronne, S. Hartweg, M. Roy-Chowdhury, G. A. Garcia, J.-C. Loison, and B. Gans,
Refining Thermochemical Properties of CF, SiF, and Their Cations by Combining Photoelectron Spectroscopy, Quantum Chemical Calculations, and the Active Thermochemical Tables Approach
Phys. Chem. Chem. Phys. 25, 30838-30847 (2023) [DOI: 10.1039/D3CP04244H]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
Uncertainties The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6] and Ruscic and Bross[7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
Website Functionality Credits The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
Acknowledgement This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.