Selected ATcT [1, 2] enthalpy of formation based on version 1.156 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.148 to include species relevant to a recent study of the oxidation of ethylene [4] as well as new measurements that led to refining the thermochemistry of CF and SiF and their cations [5].

Nitrite

Formula: [ONO]- (g)
CAS RN: 14797-65-0
ATcT ID: 14797-65-0*0
SMILES: O=[N-]=O
InChI: InChI=1S/NO2/c2-1-3/q-1
InChIKey: KYHRXPHIUFTLNH-UHFFFAOYSA-N
Hills Formula: N1O2-

2D Image:

O=[N-]=O
Aliases: [ONO]-; Nitrite; Nitrite anion; Nitrite ion (1-); Nitrite ion; Nitrogen dioxide anion; Nitrogen dioxide ion (1-); [NO2]-; NO2-; ONO-
Relative Molecular Mass: 46.00609 ± 0.00060

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-182.63-185.43± 0.46kJ/mol

3D Image of [ONO]- (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [ONO]- (g)

The 3 contributors listed below account for 90.3% of the provenance of ΔfH° of [ONO]- (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
86.01489.1 [ONO]- (g) → ONO (g) ΔrH°(0 K) = 2.273 ± 0.005 eVErvin 1988
3.41489.2 [ONO]- (g) → ONO (g) ΔrH°(0 K) = 2.275 ± 0.025 eVWoo 1981
0.81489.11 [ONO]- (g) → ONO (g) ΔrH°(0 K) = 2.287 ± 0.050 eVRuscic W1RO

Top 10 species with enthalpies of formation correlated to the ΔfH° of [ONO]- (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
14.1 Peroxyimidogen anion[NOO]- (g)[N]O[O-]165.0162.7± 1.7kJ/mol46.00609 ±
0.00060
60488-31-5*0
13.4 Nitrogen dioxideONO (g)O=[N]=O36.86734.060± 0.065kJ/mol46.00554 ±
0.00060
10102-44-0*0
13.4 Nitric oxideNO (g)[N]=O90.62891.132± 0.065kJ/mol30.00614 ±
0.00031
10102-43-9*0
13.4 Nitrosyl ion[NO]+ (g)N#[O+]984.496984.490± 0.065kJ/mol30.00559 ±
0.00031
14452-93-8*0
13.3 Dioxaziridinyl anion[N(OO)]- (g)[N-]1OO1295.9293.4± 1.7kJ/mol46.00609 ±
0.00060
66252-31-1*0
13.1 Dinitrogen tetraoxideO2NNO2 (g)O=N(=O)N(=O)=O20.1710.88± 0.14kJ/mol92.0111 ±
0.0012
10544-72-6*0
13.0 Nitrosyl chlorideClNO (g)ClN=O54.46252.560± 0.067kJ/mol65.45884 ±
0.00095
2696-92-6*0
12.7 DioxohydrazineONNO (g, cis)O=NN=O172.91171.15± 0.14kJ/mol60.01228 ±
0.00062
16824-89-8*2
12.7 DioxohydrazineONNO (g)O=NN=O172.91171.15± 0.14kJ/mol60.01228 ±
0.00062
16824-89-8*0
12.1 Nitrogen sesquioxideONN(O)O (g)O=N-[N](=O)[O]90.7486.17± 0.15kJ/mol76.01168 ±
0.00091
10544-73-7*0

Most Influential reactions involving [ONO]- (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.8771489.1 [ONO]- (g) → ONO (g) ΔrH°(0 K) = 2.273 ± 0.005 eVErvin 1988
0.1021508.8 [ONO]- (g) → [N(OO)]- (g) ΔrH°(0 K) = 114.46 ± 1.2 kcal/molRuscic W1RO
0.0941518.7 [ONO]- (g) → [NOO]- (g) ΔrH°(0 K) = 82.56 ± 1.3 kcal/molRuscic CBS-n
0.0941518.4 [ONO]- (g) → [NOO]- (g) ΔrH°(0 K) = 83.62 ± 1.3 kcal/molRuscic G4
0.0871508.4 [ONO]- (g) → [N(OO)]- (g) ΔrH°(0 K) = 115.05 ± 1.3 kcal/molRuscic G4
0.0871508.7 [ONO]- (g) → [N(OO)]- (g) ΔrH°(0 K) = 113.82 ± 1.3 kcal/molRuscic CBS-n
0.0811518.3 [ONO]- (g) → [NOO]- (g) ΔrH°(0 K) = 82.23 ± 1.4 kcal/molRuscic G3X
0.0781518.8 [ONO]- (g) → [NOO]- (g) ΔrH°(0 K) = 84.50 ± 1.2 (×1.189) kcal/molRuscic W1RO
0.0751508.3 [ONO]- (g) → [N(OO)]- (g) ΔrH°(0 K) = 115.59 ± 1.4 kcal/molRuscic G3X
0.0621518.6 [ONO]- (g) → [NOO]- (g) ΔrH°(0 K) = 83.72 ± 1.6 kcal/molRuscic CBS-n
0.0351489.2 [ONO]- (g) → ONO (g) ΔrH°(0 K) = 2.275 ± 0.025 eVWoo 1981
0.0222022.1 [HON(O)O]- (g) → OH (g) [ONO]- (g) ΔrH°(293 K) = 0.43 ± 0.17 eVPaulson 1982
0.0081489.11 [ONO]- (g) → ONO (g) ΔrH°(0 K) = 2.287 ± 0.050 eVRuscic W1RO
0.0066809.1 C6H5 (g) [ONO]- (g) → [C6H5]- (g) ONO (g) ΔrH°(0 K) = 1.1 ± 0.1 eVHacaloglu 1993
0.0051489.7 [ONO]- (g) → ONO (g) ΔrH°(0 K) = 2.294 ± 0.061 eVRuscic G4
0.0051491.8 [ONO]- (g) → N (g) + 2 O (g) ΔrH°(0 K) = 273.59 ± 1.50 kcal/molRuscic W1RO
0.0042034.1 [ON(O)O]- (g) NO (g) → [ONO]- (g) ONO (g) ΔrG°(300 K) = 12.13 ± 1.75 kcal/molMcFarland 1972, Parkes 1972, Fehsenfeld 1969, note unc4
0.0041491.7 [ONO]- (g) → N (g) + 2 O (g) ΔrH°(0 K) = 274.31 ± 1.60 kcal/molRuscic CBS-n
0.0041491.4 [ONO]- (g) → N (g) + 2 O (g) ΔrH°(0 K) = 275.72 ± 1.60 (×1.022) kcal/molRuscic G4
0.0041491.3 [ONO]- (g) → N (g) + 2 O (g) ΔrH°(0 K) = 275.28 ± 1.72 kcal/molRuscic G3X


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.156 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   N. A. Seifert, B. Ruscic, R. Sivaramakrishnan, and K. Prozument,
The C2H4O Isomers in the Oxidation of Ethylene
J. Mol. Spectrosc. 398, 111847/1-8 (2023) [DOI: 10.1016/j.jms.2023.111847]
5   U. Jacovella, B. Ruscic, N. L. Chen, H.-L. Le, S. Boyé-Péronne, S. Hartweg, M. Roy-Chowdhury, G. A. Garcia, J.-C. Loison, and B. Gans,
Refining Thermochemical Properties of CF, SiF, and Their Cations by Combining Photoelectron Spectroscopy, Quantum Chemical Calculations, and the Active Thermochemical Tables Approach
Phys. Chem. Chem. Phys. 25, 30838-30847 (2023) [DOI: 10.1039/D3CP04244H]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6] and Ruscic and Bross[7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.