Selected ATcT [1, 2] enthalpy of formation based on version 1.156 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.148 to include species relevant to a recent study of the oxidation of ethylene [4] as well as new measurements that led to refining the thermochemistry of CF and SiF and their cations [5].

Difluorosilyliumyl

Formula: [SiF2]+ (g)
CAS RN: 37300-76-8
ATcT ID: 37300-76-8*0
SMILES: F[Si+]F
InChI: InChI=1S/F2Si/c1-3-2/q+1
InChIKey: WPLNUGDSAZHARN-UHFFFAOYSA-N
Hills Formula: F2Si1+

2D Image:

F[Si+]F
Aliases: [SiF2]+; Difluorosilyliumyl; Difluorosilylene cation; Difluorosilylene ion (1+)
Relative Molecular Mass: 66.08176 ± 0.00030

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
415.0414.2± 2.0kJ/mol

3D Image of [SiF2]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [SiF2]+ (g)

The 20 contributors listed below account only for 83.4% of the provenance of ΔfH° of [SiF2]+ (g).
A total of 33 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
14.58363.5 SiF2 (g, singlet) → [SiF2]+ (g) ΔrH°(0 K) = 10.814 ± 0.040 eVRuscic W1RO
9.28363.1 SiF2 (g, singlet) → [SiF2]+ (g) ΔrH°(0 K) = 10.78 ± 0.05 eVWestwood 1974
5.58390.4 [SiF2]+ (g) → [SiF]+ (g) F (g) ΔrH°(0 K) = 75.32 ± 1.50 kcal/molRuscic W1RO
4.88390.2 [SiF2]+ (g) → [SiF]+ (g) F (g) ΔrH°(0 K) = 73.98 ± 1.60 kcal/molRuscic G4
4.68375.5 [SiF3]+ (g) → [SiF2]+ (g) F (g) ΔrH°(0 K) = 6.265 ± 0.065 eVRuscic W1RO
4.38363.3 SiF2 (g, singlet) → [SiF2]+ (g) ΔrH°(0 K) = 10.881 ± 0.073 eVRuscic G4
4.18390.1 [SiF2]+ (g) → [SiF]+ (g) F (g) ΔrH°(0 K) = 73.87 ± 1.72 kcal/molRuscic G3X
4.18375.3 [SiF3]+ (g) → [SiF2]+ (g) F (g) ΔrH°(0 K) = 6.237 ± 0.069 eVRuscic G4
3.78361.5 SiF2 (g, singlet) → Si (g) + 2 F (g) ΔrH°(0 K) = 294.7 ± 0.5 kcal/molFeller 1999a, Feller 1999a
3.68390.5 [SiF2]+ (g) → [SiF]+ (g) F (g) ΔrH°(0 K) = 3.18 ± 0.08 eVFisher 1993, note unc
3.48375.2 [SiF3]+ (g) → [SiF2]+ (g) F (g) ΔrH°(0 K) = 6.277 ± 0.075 eVRuscic G3X
3.28383.5 SiF2 (g, singlet) → SiF (g, doublet) F (g) ΔrH°(0 K) = 154.6 ± 0.5 kcal/molFeller 1999a, Feller 1999a
2.68363.2 SiF2 (g, singlet) → [SiF2]+ (g) ΔrH°(0 K) = 10.898 ± 0.093 eVRuscic G3X
2.68390.3 [SiF2]+ (g) → [SiF]+ (g) F (g) ΔrH°(0 K) = 74.15 ± 2.16 kcal/molRuscic CBS-n
2.68375.7 [SiF3]+ (g) → [SiF2]+ (g) F (g) ΔrH°(0 K) = 146.13 ± 2 kcal/molRicca 1998, est unc
2.38363.4 SiF2 (g, singlet) → [SiF2]+ (g) ΔrH°(0 K) = 10.812 ± 0.099 eVRuscic CBS-n
2.28375.4 [SiF3]+ (g) → [SiF2]+ (g) F (g) ΔrH°(0 K) = 6.226 ± 0.094 eVRuscic CBS-n
1.98354.4 SiF4 (g) → [SiF3]+ (g) F (g) ΔrH°(0 K) = 16.304 ± 0.040 eVRuscic W1RO
1.88342.1 Si (cr,l) + 2 F2 (g) → SiF4 (g) ΔrH°(298.15 K) = -385.98 ± 0.19 kcal/molWise 1963, Wise 1963, Wise 1962
1.48377.2 SiF (g, doublet) → [SiF]+ (g) ΔrH°(0 K) = 58960 ± 180 (×1.445) cm-1Bredohl 1999, Remy 1992, note unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of [SiF2]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
40.7 DifluorosilyleneSiF2 (g, singlet)F[Si]F-629.3-630.1± 1.3kJ/mol66.08231 ±
0.00030
13966-66-0*2
40.7 DifluorosilyleneSiF2 (g)F[Si]F-629.3-630.1± 1.3kJ/mol66.08231 ±
0.00030
13966-66-0*0
40.7 DifluorosilyleneSiF2 (g, triplet)F[Si]F-314.5-315.1± 1.3kJ/mol66.08231 ±
0.00030
13966-66-0*1
36.2 Trifluorosilylium[SiF3]+ (g)[Si+](F)(F)F-111.9-114.8± 1.8kJ/mol85.08016 ±
0.00030
38192-99-3*0
32.6 Fluorosilyliumylidene[SiF]+ (g)F[Si+]648.1649.3± 1.7kJ/mol47.08335 ±
0.00030
12518-09-1*0
27.1 TrifluorosilylSiF3 (g)[Si](F)(F)F-993.1-996.1± 1.3kJ/mol85.08071 ±
0.00030
14835-14-4*0
24.6 FluorosilylidyneSiF (g, doublet)F[Si]-60.26-58.43± 0.62kJ/mol47.08390 ±
0.00030
11128-24-8*1
24.6 FluorosilylidyneSiF (g)F[Si]-60.26-58.43± 0.62kJ/mol47.08390 ±
0.00030
11128-24-8*0
24.6 FluorosilylidyneSiF (g, quartet)F[Si]297.24298.46± 0.62kJ/mol47.08390 ±
0.00030
11128-24-8*2
22.9 SiliconSi (g)[Si]450.32454.66± 0.56kJ/mol28.08550 ±
0.00030
7440-21-3*0

Most Influential reactions involving [SiF2]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.2398363.5 SiF2 (g, singlet) → [SiF2]+ (g) ΔrH°(0 K) = 10.814 ± 0.040 eVRuscic W1RO
0.1538363.1 SiF2 (g, singlet) → [SiF2]+ (g) ΔrH°(0 K) = 10.78 ± 0.05 eVWestwood 1974
0.1168375.5 [SiF3]+ (g) → [SiF2]+ (g) F (g) ΔrH°(0 K) = 6.265 ± 0.065 eVRuscic W1RO
0.1148390.4 [SiF2]+ (g) → [SiF]+ (g) F (g) ΔrH°(0 K) = 75.32 ± 1.50 kcal/molRuscic W1RO
0.1038375.3 [SiF3]+ (g) → [SiF2]+ (g) F (g) ΔrH°(0 K) = 6.237 ± 0.069 eVRuscic G4
0.1008390.2 [SiF2]+ (g) → [SiF]+ (g) F (g) ΔrH°(0 K) = 73.98 ± 1.60 kcal/molRuscic G4
0.0878375.2 [SiF3]+ (g) → [SiF2]+ (g) F (g) ΔrH°(0 K) = 6.277 ± 0.075 eVRuscic G3X
0.0878390.1 [SiF2]+ (g) → [SiF]+ (g) F (g) ΔrH°(0 K) = 73.87 ± 1.72 kcal/molRuscic G3X
0.0758390.5 [SiF2]+ (g) → [SiF]+ (g) F (g) ΔrH°(0 K) = 3.18 ± 0.08 eVFisher 1993, note unc
0.0728363.3 SiF2 (g, singlet) → [SiF2]+ (g) ΔrH°(0 K) = 10.881 ± 0.073 eVRuscic G4
0.0658375.7 [SiF3]+ (g) → [SiF2]+ (g) F (g) ΔrH°(0 K) = 146.13 ± 2 kcal/molRicca 1998, est unc
0.0558375.4 [SiF3]+ (g) → [SiF2]+ (g) F (g) ΔrH°(0 K) = 6.226 ± 0.094 eVRuscic CBS-n
0.0558390.3 [SiF2]+ (g) → [SiF]+ (g) F (g) ΔrH°(0 K) = 74.15 ± 2.16 kcal/molRuscic CBS-n
0.0448363.2 SiF2 (g, singlet) → [SiF2]+ (g) ΔrH°(0 K) = 10.898 ± 0.093 eVRuscic G3X
0.0398363.4 SiF2 (g, singlet) → [SiF2]+ (g) ΔrH°(0 K) = 10.812 ± 0.099 eVRuscic CBS-n
0.0128375.6 [SiF3]+ (g) → [SiF2]+ (g) F (g) ΔrH°(0 K) = 6.29 ± 0.20 eVFisher 1993, note unc
0.0058374.1 [SiF2]+ (g) Xe (g) → SiF2 (g, singlet) Xe+ (g) ΔrH°(0 K) = 1.29 ± 0.26 eVFisher 1993, note unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.156 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   N. A. Seifert, B. Ruscic, R. Sivaramakrishnan, and K. Prozument,
The C2H4O Isomers in the Oxidation of Ethylene
J. Mol. Spectrosc. 398, 111847/1-8 (2023) [DOI: 10.1016/j.jms.2023.111847]
5   U. Jacovella, B. Ruscic, N. L. Chen, H.-L. Le, S. Boyé-Péronne, S. Hartweg, M. Roy-Chowdhury, G. A. Garcia, J.-C. Loison, and B. Gans,
Refining Thermochemical Properties of CF, SiF, and Their Cations by Combining Photoelectron Spectroscopy, Quantum Chemical Calculations, and the Active Thermochemical Tables Approach
Phys. Chem. Chem. Phys. 25, 30838-30847 (2023) [DOI: 10.1039/D3CP04244H]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6] and Ruscic and Bross[7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.