Selected ATcT [1, 2] enthalpy of formation based on version 1.148 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.140 to include species relevant to a recent study of the role of atmospheric methanediol[4].

Chlorodifluoromethane

Formula: CHClF2 (g)
CAS RN: 75-45-6
ATcT ID: 75-45-6*0
SMILES: C(F)(F)Cl
InChI: InChI=1S/CHClF2/c2-1(3)4/h1H
InChIKey: VOPWNXZWBYDODV-UHFFFAOYSA-N
Hills Formula: C1H1Cl1F2

2D Image:

C(F)(F)Cl
Aliases: CHClF2; Chlorodifluoromethane; Chloro(difluoro)methane; Difluorochloromethane; Monochlorodifluoromethane; Difluoromonochloromethane; Methane chloride difluoride; Methane difluoride chloride; Methane monochloride difluoride; Methane difluoride monochloride; Carbon chloride difluoride; Carbon difluoride chloride; Carbon monochloride difluoride; Carbon difluoride monochloride; CHF2Cl; F 22; FC 22; CFC 22; Freon 22; R 22; UN 1018; Algeon 22; Algofrene 22; Algofrene 6; Algofrene Type 6; Arcton 22; Arcton 4; Daiflon 22; Dymel 22; Electro-CF 22; Eskimon 22; Flon 22; Flugene 22; Fluorocarbon-22; Forane 22; Freon; Frigen; Frigen 22; Genetron 22; Haltron 22; Isceon 22; Isotron 22; Khaladon 22; Khladon 22; Propellant 22; Refrigerant 22; Ucon 22; Halocarbon 22; Monochlorodifluormethane
Relative Molecular Mass: 86.4681 ± 0.0012

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-475.59-481.78± 0.99kJ/mol

3D Image of CHClF2 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CHClF2 (g)

The 20 contributors listed below account only for 84.6% of the provenance of ΔfH° of CHClF2 (g).
A total of 23 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
10.06231.1 CHClF2 (g) → C (g) + 1/2 H2 (g) + 1/2 Cl2 (g) F2 (g) ΔrH°(0 K) = 1187.35 ± 3.1 kJ/molCsontos 2010
9.66234.3 CHClF2 (g) + 2 F (g) → CF4 (g) H (g) Cl (g) ΔrH°(0 K) = -270.15 ± 3.1 kJ/molCsontos 2010
9.36232.3 CHClF2 (g) F (g) → CHF3 (g) Cl (g) ΔrH°(0 K) = -168.79 ± 3.1 kJ/molCsontos 2010
8.56233.3 CHClF2 (g) F (g) → CF3Cl (g) H (g) ΔrH°(0 K) = -89.03 ± 3.1 kJ/molCsontos 2010
4.96235.3 CHClF2 (g) Cl (g) → CF2Cl2 (g) H (g) ΔrH°(0 K) = 83.29 ± 4.2 kJ/molCsontos 2010
3.96244.4 CHFCl2 (g) F (g) → CHClF2 (g) Cl (g) ΔrH°(0 K) = -155.15 ± 4.2 kJ/molCsontos 2010
3.16236.3 CHClF2 (g) + 2 Cl (g) → CHCl3 (g) + 2 F (g) ΔrH°(0 K) = 294.56 ± 5.3 kJ/molCsontos 2010
3.16234.2 CHClF2 (g) + 2 F (g) → CF4 (g) H (g) Cl (g) ΔrH°(0 K) = -64.79 ± 1.3 kcal/molRuscic G4
3.06232.2 CHClF2 (g) F (g) → CHF3 (g) Cl (g) ΔrH°(0 K) = -41.08 ± 1.3 kcal/molRuscic G4
3.06236.2 CHClF2 (g) + 2 Cl (g) → CHCl3 (g) + 2 F (g) ΔrH°(0 K) = 70.36 ± 1.3 kcal/molRuscic G4
2.96235.2 CHClF2 (g) Cl (g) → CF2Cl2 (g) H (g) ΔrH°(0 K) = 19.66 ± 1.3 kcal/molRuscic G4
2.76233.2 CHClF2 (g) F (g) → CF3Cl (g) H (g) ΔrH°(0 K) = -21.51 ± 1.3 kcal/molRuscic G4
2.76244.3 CHFCl2 (g) F (g) → CHClF2 (g) Cl (g) ΔrH°(0 K) = -37.71 ± 1.2 kcal/molRuscic W1RO
2.66234.1 CHClF2 (g) + 2 F (g) → CF4 (g) H (g) Cl (g) ΔrH°(0 K) = -64.82 ± 1.4 kcal/molRuscic G3X
2.66232.1 CHClF2 (g) F (g) → CHF3 (g) Cl (g) ΔrH°(0 K) = -41.18 ± 1.4 kcal/molRuscic G3X
2.66236.1 CHClF2 (g) + 2 Cl (g) → CHCl3 (g) + 2 F (g) ΔrH°(0 K) = 70.47 ± 1.4 kcal/molRuscic G3X
2.56235.1 CHClF2 (g) Cl (g) → CF2Cl2 (g) H (g) ΔrH°(0 K) = 19.25 ± 1.4 kcal/molRuscic G3X
2.36233.1 CHClF2 (g) F (g) → CF3Cl (g) H (g) ΔrH°(0 K) = -21.64 ± 1.4 kcal/molRuscic G3X
2.36244.2 CHFCl2 (g) F (g) → CHClF2 (g) Cl (g) ΔrH°(0 K) = -37.14 ± 1.3 kcal/molRuscic G4
2.16237.3 CHClF2 (g) + 3 Cl (g) → CCl4 (g) H (g) + 2 F (g) ΔrH°(0 K) = 395.99 ± 6.4 kJ/molCsontos 2010

Top 10 species with enthalpies of formation correlated to the ΔfH° of CHClF2 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
16.3 FluorodichloromethaneCHFCl2 (g)C(F)(Cl)Cl-277.66-283.11± 0.90kJ/mol102.9224 ±
0.0020
75-43-4*0
13.6 ChlorotrifluoromethaneCF3Cl (g)FC(F)(F)Cl-704.29-709.40± 0.56kJ/mol104.4586 ±
0.0012
75-72-9*0
11.8 DichlorodifluoromethaneCF2Cl2 (g)FC(F)(Cl)Cl-488.92-493.10± 0.45kJ/mol120.9129 ±
0.0020
75-71-8*0
9.6 TetrachloromethaneCCl4 (g)ClC(Cl)(Cl)Cl-89.36-91.53± 0.42kJ/mol153.8215 ±
0.0037
56-23-5*0
9.6 TetrachloromethaneCCl4 (l)ClC(Cl)(Cl)Cl-104.63-124.04± 0.42kJ/mol153.8215 ±
0.0037
56-23-5*500
9.5 FluoroformCHF3 (g)C(F)(F)F-689.28-696.23± 0.38kJ/mol70.01385 ±
0.00080
75-46-7*0
9.3 TetrafluoromethaneCF4 (g)C(F)(F)(F)F-927.65-933.62± 0.23kJ/mol88.00431 ±
0.00080
75-73-0*0
9.2 ChloroformCHCl3 (g)C(Cl)(Cl)Cl-94.59-99.50± 0.40kJ/mol119.3767 ±
0.0028
67-66-3*0
8.9 FluoroformCHF3 (l)C(F)(F)F-704.69± 0.41kJ/mol70.01385 ±
0.00080
75-46-7*590
8.5 ChloroformCHCl3 (l)C(Cl)(Cl)Cl-130.90± 0.43kJ/mol119.3767 ±
0.0028
67-66-3*590

Most Influential reactions involving CHClF2 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.1176233.3 CHClF2 (g) F (g) → CF3Cl (g) H (g) ΔrH°(0 K) = -89.03 ± 3.1 kJ/molCsontos 2010
0.1086232.3 CHClF2 (g) F (g) → CHF3 (g) Cl (g) ΔrH°(0 K) = -168.79 ± 3.1 kJ/molCsontos 2010
0.1016234.3 CHClF2 (g) + 2 F (g) → CF4 (g) H (g) Cl (g) ΔrH°(0 K) = -270.15 ± 3.1 kJ/molCsontos 2010
0.1006231.1 CHClF2 (g) → C (g) + 1/2 H2 (g) + 1/2 Cl2 (g) F2 (g) ΔrH°(0 K) = 1187.35 ± 3.1 kJ/molCsontos 2010
0.0836244.4 CHFCl2 (g) F (g) → CHClF2 (g) Cl (g) ΔrH°(0 K) = -155.15 ± 4.2 kJ/molCsontos 2010
0.0606235.3 CHClF2 (g) Cl (g) → CF2Cl2 (g) H (g) ΔrH°(0 K) = 83.29 ± 4.2 kJ/molCsontos 2010
0.0586244.3 CHFCl2 (g) F (g) → CHClF2 (g) Cl (g) ΔrH°(0 K) = -37.71 ± 1.2 kcal/molRuscic W1RO
0.0506244.2 CHFCl2 (g) F (g) → CHClF2 (g) Cl (g) ΔrH°(0 K) = -37.14 ± 1.3 kcal/molRuscic G4
0.0436244.1 CHFCl2 (g) F (g) → CHClF2 (g) Cl (g) ΔrH°(0 K) = -37.12 ± 1.4 kcal/molRuscic G3X
0.0386233.2 CHClF2 (g) F (g) → CF3Cl (g) H (g) ΔrH°(0 K) = -21.51 ± 1.3 kcal/molRuscic G4
0.0376236.3 CHClF2 (g) + 2 Cl (g) → CHCl3 (g) + 2 F (g) ΔrH°(0 K) = 294.56 ± 5.3 kJ/molCsontos 2010
0.0356235.2 CHClF2 (g) Cl (g) → CF2Cl2 (g) H (g) ΔrH°(0 K) = 19.66 ± 1.3 kcal/molRuscic G4
0.0356236.2 CHClF2 (g) + 2 Cl (g) → CHCl3 (g) + 2 F (g) ΔrH°(0 K) = 70.36 ± 1.3 kcal/molRuscic G4
0.0356232.2 CHClF2 (g) F (g) → CHF3 (g) Cl (g) ΔrH°(0 K) = -41.08 ± 1.3 kcal/molRuscic G4
0.0336234.2 CHClF2 (g) + 2 F (g) → CF4 (g) H (g) Cl (g) ΔrH°(0 K) = -64.79 ± 1.3 kcal/molRuscic G4
0.0326233.1 CHClF2 (g) F (g) → CF3Cl (g) H (g) ΔrH°(0 K) = -21.64 ± 1.4 kcal/molRuscic G3X
0.0306235.1 CHClF2 (g) Cl (g) → CF2Cl2 (g) H (g) ΔrH°(0 K) = 19.25 ± 1.4 kcal/molRuscic G3X
0.0306236.1 CHClF2 (g) + 2 Cl (g) → CHCl3 (g) + 2 F (g) ΔrH°(0 K) = 70.47 ± 1.4 kcal/molRuscic G3X
0.0306232.1 CHClF2 (g) F (g) → CHF3 (g) Cl (g) ΔrH°(0 K) = -41.18 ± 1.4 kcal/molRuscic G3X
0.0286234.1 CHClF2 (g) + 2 F (g) → CF4 (g) H (g) Cl (g) ΔrH°(0 K) = -64.82 ± 1.4 kcal/molRuscic G3X


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.148 of the Thermochemical Network (2023); available at ATcT.anl.gov
4   T. L. Nguyen, J. Peeters, J.-F. Müller, A. Perera, D. H. Bross, B. Ruscic, and J. F. Stanton,
Methanediol from Cloud-Processed Formaldehyde is Only a Minor Source of Atmospheric Formic Acid
Natl. Acad. Sci. 120, e2304650120/1-8 (2023) [DOI: 10.1073/pnas.2304650120]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.