Selected ATcT [1, 2] enthalpy of formation based on version 1.148 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.140 to include species relevant to a recent study of the role of atmospheric methanediol[4].

Hydrazine

Formula: NH2NH2 (g)
CAS RN: 302-01-2
ATcT ID: 302-01-2*0
SMILES: NN
InChI: InChI=1S/H4N2/c1-2/h1-2H2
InChIKey: OAKJQQAXSVQMHS-UHFFFAOYSA-N
Hills Formula: H4N2

2D Image:

NN
Aliases: NH2NH2; Hydrazine; Dinitrogen tetrahydride; Diazane; Levoxine; Oxytreat 35
Relative Molecular Mass: 32.04524 ± 0.00031

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
111.7197.56± 0.44kJ/mol

3D Image of NH2NH2 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of NH2NH2 (g)

The 20 contributors listed below account only for 80.7% of the provenance of ΔfH° of NH2NH2 (g).
A total of 42 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
17.01785.10 NH3 (g) → NH2NH2 (g) H2 (g) ΔrH°(0 K) = 45.18 ± 0.25 kcal/molKarton 2008, Karton 2006
11.91780.8 NH2NH2 (g) → 2 N (g) + 4 H (g) ΔrH°(0 K) = 404.76 ± 0.30 kcal/molKarton 2011, Karton 2008
8.31785.1 NH3 (g) → NH2NH2 (g) H2 (g) ΔrH°(0 K) = 188.93 ± 1.5 kJ/molKlippenstein 2017
7.91818.8 NH2NH2 (g) → HNNH (g, trans) H2 (g) ΔrH°(0 K) = 22.78 ± 0.30 kcal/molKarton 2011
6.21780.10 NH2NH2 (g) → 2 N (g) + 4 H (g) ΔrH°(0 K) = 1693.65 ± 1.73 kJ/molFeller 2017
4.11789.1 NH2NH2 (cr,l) → NH2NH2 (g) ΔrH°(298.15 K) = 10.69 ± 0.10 (×5.076) kcal/molScott 1949, apud JANAF 3
3.81785.11 NH3 (g) → NH2NH2 (g) H2 (g) ΔrH°(0 K) = 187.1 ± 2.2 kJ/molKlopper 2010a, est unc
3.41780.7 NH2NH2 (g) → 2 N (g) + 4 H (g) ΔrH°(0 K) = 404.91 ± 0.56 kcal/molKarton 2011
2.91780.9 NH2NH2 (g) → 2 N (g) + 4 H (g) ΔrH°(0 K) = 405.19 ± 0.6 kcal/molFeller 2008, Matus 2006a
2.41780.11 NH2NH2 (g) → 2 N (g) + 4 H (g) ΔrH°(0 K) = 1692.7 ± 2.8 kJ/molKlopper 2010a
2.31798.1 NH2NH2 (g) → [NH2NH]+ (g) H (g) ΔrH°(0 K) = 11.112 ± 0.010 eVGibson 1985, AE corr, Ruscic 1991b
2.21818.7 NH2NH2 (g) → HNNH (g, trans) H2 (g) ΔrH°(0 K) = 23.03 ± 0.56 kcal/molKarton 2011
1.31797.1 NH3 (g) → NH2NH (g) + 3/2 H2 (g) ΔrH°(0 K) = 311.40 ± 1.5 kJ/molKlippenstein 2017
1.21793.1 NH2NH (g) → [NH2NH]+ (g) ΔrH°(0 K) = 7.61 ± 0.01 eVRuscic 1991b
1.01787.1 NH2NH2 (g) → NH3 (g) NH (g) ΔrH°(0 K) = 50.1 ± 1.0 kcal/molKlippenstein 2009, est unc
1.01786.10 NH2NH2 (g) → 2 NH2 (g) ΔrH°(0 K) = 63.7 ± 1.0 kcal/molKlippenstein 2009, est unc
0.71785.9 NH3 (g) → NH2NH2 (g) H2 (g) ΔrH°(0 K) = 45.08 ± 1.2 kcal/molRuscic W1RO
0.71830.1 NH2NH2 (g) → NNH2 (g) H2 (g) ΔrH°(0 K) = 47.1 ± 1.0 kcal/molKlippenstein 2009, est unc
0.71795.9 [NH2NH]+ (g) → 2 N (g) + 3 H (g) ΔrH°(0 K) = 148.34 ± 0.8 kcal/molMatus 2006a, est unc
0.71829.1 NH2NH2 (g) → HNNH (g, trans) H2 (g) ΔrH°(0 K) = 23.1 ± 1.0 kcal/molKlippenstein 2009, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of NH2NH2 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
39.4 Diazenium[NH2NH]+ (g)N[NH+]968.64957.38± 0.73kJ/mol31.03675 ±
0.00025
37369-93-0*0
26.2 HydrazinoNH2NH (g)N[NH]234.76224.24± 0.69kJ/mol31.03730 ±
0.00025
13598-46-4*0
20.1 (E)-DiazeneHNNH (g, trans)[H]/N=N/[H]207.12199.98± 0.41kJ/mol30.02936 ±
0.00020
15626-43-4*0
20.1 DiazeneHNNH (g, trans-cis-iso equilib)N=N207.12199.98± 0.41kJ/mol30.02936 ±
0.00020
3618-05-1*0
20.1 DiazeneHNNH (g, trans-cis equilib)N=N207.12199.98± 0.41kJ/mol30.02936 ±
0.00020
3618-05-1*1
15.2 NitrosamineNH2NO (g)NN=O84.9976.10± 0.96kJ/mol46.02876 ±
0.00036
35576-91-1*0
13.1 Hydraziniumyl[NH2NH2]+ (g)N[NH2+]886.6873.3± 2.0kJ/mol32.04469 ±
0.00031
20771-51-1*0
12.3 IsodiazeneNNH2 (g)[N]N307.54300.46± 0.63kJ/mol30.02936 ±
0.00020
28647-38-3*0
11.9 (E)-Diazene cation[HNNH]+ (g, trans)[H]/N=[N+]/[H]1132.491125.55± 0.64kJ/mol30.02881 ±
0.00020
59952-06-6*0
11.9 Diazene cation[HNNH]+ (g, trans-iso-cis equilib)N=[NH+]1132.491125.83± 0.64kJ/mol30.02881 ±
0.00020
76986-17-9*0

Most Influential reactions involving NH2NH2 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.7021782.6 [NH2NH2]- (g) → NH2NH2 (g) ΔrH°(0 K) = -1.227 ± 0.050 eVRuscic W1RO
0.5031798.1 NH2NH2 (g) → [NH2NH]+ (g) H (g) ΔrH°(0 K) = 11.112 ± 0.010 eVGibson 1985, AE corr, Ruscic 1991b
0.2651781.10 NH2NH2 (g) → [NH2NH2]+ (g) ΔrH°(0 K) = 8.025 ± 0.040 eVRuscic W1RO
0.2161782.5 [NH2NH2]- (g) → NH2NH2 (g) ΔrH°(0 K) = -1.330 ± 0.090 eVRuscic CBS-n
0.2038852.4 NH2NO (g) → NH2NH2 (g) ONNO (g) ΔrH°(0 K) = 27.70 ± 1.0 kcal/molRuscic CBS-n
0.1791818.8 NH2NH2 (g) → HNNH (g, trans) H2 (g) ΔrH°(0 K) = 22.78 ± 0.30 kcal/molKarton 2011
0.1741785.10 NH3 (g) → NH2NH2 (g) H2 (g) ΔrH°(0 K) = 45.18 ± 0.25 kcal/molKarton 2008, Karton 2006
0.1688852.1 NH2NO (g) → NH2NH2 (g) ONNO (g) ΔrH°(0 K) = 28.36 ± 1.1 kcal/molRuscic G3X
0.1318852.2 NH2NO (g) → NH2NH2 (g) ONNO (g) ΔrH°(0 K) = 28.63 ± 1.0 (×1.242) kcal/molRuscic G4
0.1201780.8 NH2NH2 (g) → 2 N (g) + 4 H (g) ΔrH°(0 K) = 404.76 ± 0.30 kcal/molKarton 2011, Karton 2008
0.1208852.3 NH2NO (g) → NH2NH2 (g) ONNO (g) ΔrH°(0 K) = 28.09 ± 1.3 kcal/molRuscic CBS-n
0.0841785.1 NH3 (g) → NH2NH2 (g) H2 (g) ΔrH°(0 K) = 188.93 ± 1.5 kJ/molKlippenstein 2017
0.0791781.6 NH2NH2 (g) → [NH2NH2]+ (g) ΔrH°(0 K) = 8.035 ± 0.073 eVRuscic G4
0.0751781.9 NH2NH2 (g) → [NH2NH2]+ (g) ΔrH°(0 K) = 7.988 ± 0.075 eVRuscic CBS-n
0.0661781.11 NH2NH2 (g) → [NH2NH2]+ (g) ΔrH°(0 K) = 8.07 ± 0.08 eVRocha 2008, est unc
0.0631780.10 NH2NH2 (g) → 2 N (g) + 4 H (g) ΔrH°(0 K) = 1693.65 ± 1.73 kJ/molFeller 2017
0.0551798.10 NH2NH2 (g) → [NH2NH]+ (g) H (g) ΔrH°(0 K) = 11.128 ± 0.030 eVMatus 2006a, est unc
0.0511818.7 NH2NH2 (g) → HNNH (g, trans) H2 (g) ΔrH°(0 K) = 23.03 ± 0.56 kcal/molKarton 2011
0.0491781.5 NH2NH2 (g) → [NH2NH2]+ (g) ΔrH°(0 K) = 8.045 ± 0.093 eVRuscic G3X
0.0481789.1 NH2NH2 (cr,l) → NH2NH2 (g) ΔrH°(298.15 K) = 10.69 ± 0.10 (×5.076) kcal/molScott 1949, apud JANAF 3


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.148 of the Thermochemical Network (2023); available at ATcT.anl.gov
4   T. L. Nguyen, J. Peeters, J.-F. Müller, A. Perera, D. H. Bross, B. Ruscic, and J. F. Stanton,
Methanediol from Cloud-Processed Formaldehyde is Only a Minor Source of Atmospheric Formic Acid
Natl. Acad. Sci. 120, e2304650120/1-8 (2023) [DOI: 10.1073/pnas.2304650120]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.