Selected ATcT [1, 2] enthalpy of formation based on version 1.148 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.140 to include species relevant to a recent study of the role of atmospheric methanediol[4].
|
Hydrazoic acid |
Formula: HNNN (aq) |
CAS RN: 7782-79-8 |
ATcT ID: 7782-79-8*800 |
SMILES: N=[N+]=[N-] |
InChI: InChI=1S/HN3/c1-3-2/h1H |
InChIKey: JUINSXZKUKVTMD-UHFFFAOYSA-N |
Hills Formula: H1N3 |
2D Image: |
|
Aliases: HNNN; Hydrazoic acid; Hydrogen azide; Azidic acid; Azoimide; Diazoimide; Hydronitric acid; Triazoic acid; NNNH |
Relative Molecular Mass: 43.02816 ± 0.00022 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
| 272.70 | ± 0.48 | kJ/mol |
|
Top contributors to the provenance of ΔfH° of HNNN (aq)The 20 contributors listed below account only for 87.7% of the provenance of ΔfH° of HNNN (aq). A total of 28 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 29.5 | 2114.1 | 2 [NNN]- (aq) + [I3]- (aq) → 3 N2 (g) + 3 I- (aq)  | ΔrH°(298.15 K) = -158.78 ± 0.2 kcal/mol | Gray 1956 | 19.8 | 1345.1 | I2 (cr,l) + I- (aq) → [I3]- (aq)  | ΔrH°(298.15 K) = 1.338 ± 0.256 kcal/mol | Wu 1963 | 9.8 | 1344.1 | Br2 (cr,l) + 3 I- (aq) → [I3]- (aq) + 2 Br- (aq)  | ΔrH°(298.15 K) = -29.355 ± 0.364 kcal/mol | Wu 1963 | 9.1 | 2093.11 | HNNN (g) → H (g) + 3 N (g)  | ΔrH°(0 K) = 318.06 ± 0.30 kcal/mol | Karton 2011 | 2.9 | 2111.1 | HNNN (g) → HNNN (aq, undissoc)  | ΔrH°(298.15 K) = -8.1 ± 0.1 kcal/mol | D'Orazio 1963, as quoted by NBS Tables | 2.9 | 2111.2 | HNNN (g) → HNNN (aq, undissoc)  | ΔrG°(298.15 K) = -1.5 ± 0.1 kcal/mol | D'Orazio 1963, as quoted by NBS Tables | 2.7 | 2100.1 | HNNN (g) → 1/2 H2 (g) + 3/2 N2 (g)  | ΔrH°(285.6 K) = -70.3 ± 0.5 (×1.091) kcal/mol | Gunther 1935, apud Gurvich TPIS, as quoted by NBS Tables | 2.6 | 2093.10 | HNNN (g) → H (g) + 3 N (g)  | ΔrH°(0 K) = 317.83 ± 0.56 kcal/mol | Karton 2011 | 1.9 | 2101.1 | HNNN (g) → H (g) + NNN (g)  | ΔrH°(0 K) = 30970 ± 50 cm-1 | Cook 1999 | 1.1 | 1346.1 | Cl2 (g) + 3 I- (aq) → 2 Cl- (aq) + [I3]- (aq)  | ΔrH°(298.15 K) = -51.5 ± 1.1 kcal/mol | Wartenberg 1930, Wartenberg 1931, Parker 1965 | 0.9 | 2112.2 | HNNN (aq, undissoc) → HNNN (aq)  | ΔrH°(298.15 K) = 3.60 ± 0.05 kcal/mol | Gray 1956 | 0.5 | 2093.12 | HNNN (g) → H (g) + 3 N (g)  | ΔrH°(0 K) = 316.66 ± 1 (×1.189) kcal/mol | Gutowski 2006 | 0.5 | 1429.11 | NNN (g) → N2 (g) + N (g)  | ΔrH°(0 K) = 4.00 ± 1.0 kcal/mol | Dixon 2004 | 0.4 | 1424.9 | NNN (g) → 3 N (g)  | ΔrH°(0 K) = 228.34 ± 1.0 kcal/mol | Dixon 2004 | 0.4 | 2101.2 | HNNN (g) → H (g) + NNN (g)  | ΔrH°(0 K) = 30920 ± 100 cm-1 | Yuan 2008 | 0.4 | 1292.1 | HI (g) → HI (aq, 5130 H2O)  | ΔrH°(298.15 K) = -19.862 ± 0.020 kcal/mol | Vanderzee 1974 | 0.4 | 2093.9 | HNNN (g) → H (g) + 3 N (g)  | ΔrH°(0 K) = 317.09 ± 1.35 kcal/mol | Karton 2011 | 0.3 | 2093.8 | HNNN (g) → H (g) + 3 N (g)  | ΔrH°(0 K) = 317.66 ± 1.50 kcal/mol | Ruscic W1RO | 0.3 | 1430.4 | NNN (g) + CO (g) + [O2]+ (g) → [CO2]+ (g) + N2 (g) + NO (g)  | ΔrH°(0 K) = -114.03 ± 1.2 kcal/mol | Ruscic W1RO | 0.3 | 1428.9 | [NNN]- (g) → 3 N (g)  | ΔrH°(0 K) = 290.18 ± 1.0 kcal/mol | Dixon 2004 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of HNNN (aq) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 100.0 | Azide | [NNN]- (aq) | | | 272.70 | ± 0.48 | kJ/mol | 42.02077 ± 0.00021 | 14343-69-2*800 | 94.6 | Hydrazoic acid | HNNN (aq, undissoc) | | | 257.71 | ± 0.48 | kJ/mol | 43.02816 ± 0.00022 | 7782-79-8*1000 | 78.4 | Hydrazoic acid | HNNN (g) | | 298.00 | 291.70 | ± 0.49 | kJ/mol | 43.02816 ± 0.00022 | 7782-79-8*0 | 59.4 | Hydrazoic acid | HNNN (cr,l) | | | 261.58 | ± 0.65 | kJ/mol | 43.02816 ± 0.00022 | 7782-79-8*500 | 50.3 | Azido radical | NNN (g) | | 452.39 | 449.80 | ± 0.60 | kJ/mol | 42.02022 ± 0.00021 | 12596-60-0*0 | 44.1 | Hydrazoic acid cation | [HNNN]+ (g) | | 1333.74 | 1328.07 | ± 0.83 | kJ/mol | 43.02761 ± 0.00022 | 58852-14-5*0 | 28.2 | Trinitrogen cation | [NNN]+ (g) | | 1519.60 | 1516.97 | ± 0.89 | kJ/mol | 42.01967 ± 0.00021 | 12185-03-4*0 | 27.1 | Azide | [NNN]- (g) | | 193.64 | 190.13 | ± 0.91 | kJ/mol | 42.02077 ± 0.00021 | 14343-69-2*0 | 19.3 | Cyanic azide | NCNNN (g) | | 502.8 | 498.3 | ± 1.9 | kJ/mol | 68.03766 ± 0.00085 | 764-05-6*0 | -59.4 | Triiodide | [I3]- (aq) | | | -51.54 | ± 0.80 | kJ/mol | 380.713959 ± 0.000090 | 14900-04-0*800 |
|
Most Influential reactions involving HNNN (aq)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.148 of the Thermochemical Network (2023); available at ATcT.anl.gov |
4
|
|
T. L. Nguyen, J. Peeters, J.-F. Müller, A. Perera, D. H. Bross, B. Ruscic, and J. F. Stanton,
Methanediol from Cloud-Processed Formaldehyde is Only a Minor Source of Atmospheric Formic Acid
Natl. Acad. Sci. 120, e2304650120/1-8 (2023)
[DOI: 10.1073/pnas.2304650120]
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|