Selected ATcT [1, 2] enthalpy of formation based on version 1.148 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.140 to include species relevant to a recent study of the role of atmospheric methanediol[4].
|
Naphthalene |
Formula: C6H4(C4H4) (g) |
CAS RN: 91-20-3 |
ATcT ID: 91-20-3*0 |
SMILES: c1ccc2ccccc2c1 |
InChI: InChI=1S/C10H8/c1-2-6-10-8-4-3-7-9(10)5-1/h1-8H |
InChIKey: UFWIBTONFRDIAS-UHFFFAOYSA-N |
Hills Formula: C10H8 |
2D Image: |
|
Aliases: C6H4(C4H4); Naphthalene; Albocarbon; Dezodorator; Moth flakes; NSC 37565; Naphthene; Tar camphor; White tar |
Relative Molecular Mass: 128.1705 ± 0.0080 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
171.22 | 147.74 | ± 0.55 | kJ/mol |
|
3D Image of C6H4(C4H4) (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of C6H4(C4H4) (g)The 20 contributors listed below account only for 63.0% of the provenance of ΔfH° of C6H4(C4H4) (g). A total of 62 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 10.4 | 8805.16 | C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -1231.34 ± 0.36 kcal/mol | Keffler 1927, as quoted by NIST WebBook, est unc | 4.0 | 8838.5 | C6H4(C2H2(CC(C4H4))) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = 9.7 ± 3.6 kJ/mol | Karton 2013, Karton 2013, est unc | 3.8 | 8805.15 | C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -1231.05 ± 0.36 (×1.646) kcal/mol | Keffler 1931, Cox 1970 | 3.6 | 8838.4 | C6H4(C2H2(CC(C4H4))) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = 2.83 ± 0.90 kcal/mol | Ruscic CBS-n | 3.6 | 8838.2 | C6H4(C2H2(CC(C4H4))) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = 2.09 ± 0.90 kcal/mol | Ruscic G4 | 3.6 | 8838.1 | C6H4(C2H2(CC(C4H4))) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = 2.05 ± 0.90 kcal/mol | Ruscic G3X | 3.1 | 8833.4 | C6H4(CH(CC(C4H4)CH)) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = -2.87 ± 0.90 kcal/mol | Ruscic CBS-n | 3.1 | 8833.2 | C6H4(CH(CC(C4H4)CH)) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = -3.55 ± 0.90 kcal/mol | Ruscic G4 | 3.1 | 8833.1 | C6H4(CH(CC(C4H4)CH)) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = -3.63 ± 0.90 kcal/mol | Ruscic G3X | 2.9 | 8838.3 | C6H4(C2H2(CC(C4H4))) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = 2.73 ± 1.0 kcal/mol | Ruscic CBS-n | 2.7 | 8841.1 | C6H4(C2H2(CC(C4H4))) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l)  | ΔrH°(298.15 K) = -7048.5 ± 0.9 kJ/mol | Nagano 2002 | 2.6 | 8805.1 | C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -1232.34 ± 0.22 (×3.221) kcal/mol | Coleman 1966 | 2.5 | 8833.3 | C6H4(CH(CC(C4H4)CH)) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = -2.96 ± 1.0 kcal/mol | Ruscic CBS-n | 2.4 | 8838.6 | C6H4(C2H2(CC(C4H4))) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = 9.5 ± 4.6 kJ/mol | Karton 2021, Karton 2021 | 2.3 | 8805.6 | C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -5156.3 ± 1.2 (×2.65) kJ/mol | Ammar 1977, as quoted by NIST WebBook, Roux 2008, Roux 2008 | 2.0 | 8833.5 | C6H4(CH(CC(C4H4)CH)) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = -14.5 ± 4.6 kJ/mol | Karton 2021, Karton 2021, Karton 2012a, Karton 2012a | 2.0 | 2145.7 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/mol | Hawtin 1966, note CO2e | 1.6 | 8805.7 | C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -5156.89 ± 1.60 (×2.378) kJ/mol | Speros 1960 | 1.4 | 8838.7 | C6H4(C2H2(CC(C4H4))) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = 9.53 ± 6 kJ/mol | Dorofeeva 2022, est unc | 1.3 | 8834.1 | C6H4(CH(CC(C4H4)CH)) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l)  | ΔrH°(298.15 K) = -7062.6 ± 2.1 kJ/mol | Ribeiro da Silva 2007 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H4(C4H4) (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 98.9 | Naphtalene cation | [C6H4(C4H4)]+ (g) | | 956.98 | 933.91 | ± 0.55 | kJ/mol | 128.1700 ± 0.0080 | 34512-27-1*0 | 97.6 | Naphthalene | C6H4(C4H4) (cr,l) | | 94.76 | 75.17 | ± 0.55 | kJ/mol | 128.1705 ± 0.0080 | 91-20-3*500 | 47.8 | 1-Naphthyl anion | [C6H4(CCHCHCH)]- (g) | | 283.6 | 264.2 | ± 1.2 | kJ/mol | 127.1631 ± 0.0080 | 125254-29-7*0 | 44.9 | 2-Naphthyl anion | [C6H4(CHCCHCH)]- (g) | | 288.8 | 269.4 | ± 1.2 | kJ/mol | 127.1631 ± 0.0080 | 88760-89-8*0 | 43.7 | 1-Naphthalenyl | C6H4(CCHCHCH) (g) | | 418.1 | 398.5 | ± 1.3 | kJ/mol | 127.1626 ± 0.0080 | 2510-51-2*0 | 41.8 | 2-Naphthalenyl | C6H4(CHCCHCH) (g) | | 416.8 | 397.2 | ± 1.3 | kJ/mol | 127.1626 ± 0.0080 | 10237-50-0*0 | 40.4 | Phenanthrene | C6H4(C2H2(CC(C4H4))) (g) | | 232.03 | 203.21 | ± 0.75 | kJ/mol | 178.2292 ± 0.0112 | 85-01-8*0 | 38.9 | Anthracene | C6H4(CH(CC(C4H4)CH)) (g) | | 256.05 | 227.04 | ± 0.92 | kJ/mol | 178.2292 ± 0.0112 | 120-12-7*0 | 35.5 | Anthracene | C6H4(CH(CC(C4H4)CH)) (cr,l) | | 150.68 | 124.87 | ± 0.88 | kJ/mol | 178.2292 ± 0.0112 | 120-12-7*500 | 33.7 | Phenanthrene | C6H4(C2H2(CC(C4H4))) (cr,l) | | 136.31 | 111.03 | ± 0.64 | kJ/mol | 178.2292 ± 0.0112 | 85-01-8*500 |
|
Most Influential reactions involving C6H4(C4H4) (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.878 | 8797.1 | C6H4(C4H4) (g) → [C6H4(C4H4)]+ (g)  | ΔrH°(0 K) = 65687 ± 7 cm-1 | Cockett 1993 | 0.373 | 8798.4 | [C6H4(C4H4)]- (g) → C6H4(C4H4) (g)  | ΔrH°(0 K) = -0.20 ± 0.05 eV | Schiedt 2000 | 0.176 | 8806.7 | C6H4(C4H4) (cr,l) → C6H4(C4H4) (g)  | ΔrH°(298.15 K) = 72.51 ± 0.28 kJ/mol | de Kruif 1981, Roux 2008, Roux 2008 | 0.153 | 8806.1 | C6H4(C4H4) (cr,l) → C6H4(C4H4) (g)  | ΔrH°(298.15 K) = 72.6 ± 0.3 kJ/mol | Roux 2008, Roux 2008 | 0.153 | 8806.10 | C6H4(C4H4) (cr,l) → C6H4(C4H4) (g)  | ΔrH°(298.15 K) = 72.5 ± 0.3 kJ/mol | Lee 1993, Roux 2008, Roux 2008 | 0.129 | 8798.5 | [C6H4(C4H4)]- (g) → C6H4(C4H4) (g)  | ΔrH°(0 K) = -0.184 ± 0.085 eV | Ruscic G3X | 0.112 | 8797.2 | C6H4(C4H4) (g) → [C6H4(C4H4)]+ (g)  | ΔrH°(0 K) = 65665 ± 10 (×1.957) cm-1 | Duncan 1981 | 0.110 | 8798.7 | [C6H4(C4H4)]- (g) → C6H4(C4H4) (g)  | ΔrH°(0 K) = -0.127 ± 0.092 eV | Ruscic CBS-n | 0.096 | 8823.2 | C6H4(C4H4) (g) + C6H5 (g) → C6H6 (g) + C6H4(CHCCHCH) (g)  | ΔrH°(0 K) = -2.14 ± 0.90 kcal/mol | Ruscic G4 | 0.096 | 8823.1 | C6H4(C4H4) (g) + C6H5 (g) → C6H6 (g) + C6H4(CHCCHCH) (g)  | ΔrH°(0 K) = -1.32 ± 0.90 kcal/mol | Ruscic G3X | 0.093 | 8798.3 | [C6H4(C4H4)]- (g) → C6H4(C4H4) (g)  | ΔrH°(0 K) = -0.18 ± 0.10 eV | Song 2002b, est unc | 0.093 | 8798.1 | [C6H4(C4H4)]- (g) → C6H4(C4H4) (g)  | ΔrH°(0 K) = -0.20 ± 0.10 eV | Lyapustina 2000, est unc | 0.093 | 8798.2 | [C6H4(C4H4)]- (g) → C6H4(C4H4) (g)  | ΔrH°(0 K) = -0.19 ± 0.10 eV | Burrow 1987 | 0.088 | 8824.2 | C6H4(C4H4) (g) + C6H5 (g) → C6H6 (g) + C6H4(CCHCHCH) (g)  | ΔrH°(0 K) = -1.82 ± 0.90 kcal/mol | Ruscic G4 | 0.088 | 8824.1 | C6H4(C4H4) (g) + C6H5 (g) → C6H6 (g) + C6H4(CCHCHCH) (g)  | ΔrH°(0 K) = -1.01 ± 0.90 kcal/mol | Ruscic G3X | 0.086 | 8806.4 | C6H4(C4H4) (cr,l) → C6H4(C4H4) (g)  | ΔrH°(298.15 K) = 72.7 ± 0.4 kJ/mol | Chirico 1993, Roux 2008, Roux 2008 | 0.085 | 8833.4 | C6H4(CH(CC(C4H4)CH)) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = -2.87 ± 0.90 kcal/mol | Ruscic CBS-n | 0.085 | 8833.1 | C6H4(CH(CC(C4H4)CH)) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = -3.63 ± 0.90 kcal/mol | Ruscic G3X | 0.085 | 8833.2 | C6H4(CH(CC(C4H4)CH)) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = -3.55 ± 0.90 kcal/mol | Ruscic G4 | 0.081 | 8798.6 | [C6H4(C4H4)]- (g) → C6H4(C4H4) (g)  | ΔrH°(0 K) = -0.064 ± 0.061 (×1.756) eV | Ruscic G4 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.148 of the Thermochemical Network (2023); available at ATcT.anl.gov |
4
|
|
T. L. Nguyen, J. Peeters, J.-F. Müller, A. Perera, D. H. Bross, B. Ruscic, and J. F. Stanton,
Methanediol from Cloud-Processed Formaldehyde is Only a Minor Source of Atmospheric Formic Acid
Natl. Acad. Sci. 120, e2304650120/1-8 (2023)
[DOI: 10.1073/pnas.2304650120]
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|