Selected ATcT [1, 2] enthalpy of formation based on version 1.148 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.140 to include species relevant to a recent study of the role of atmospheric methanediol[4].

Cyanoamidogen

Formula: HNCN (g, doublet)
CAS RN: 12347-01-2
ATcT ID: 12347-01-2*1
SMILES: [NH]C#N
SMILES: N=C=[N]
InChI: InChI=1S/CHN2/c2-1-3/h2H
InChIKey: RCDKZYGELCBJTH-UHFFFAOYSA-N
Hills Formula: C1H1N2

2D Image:

[NH]C#N
Aliases: HNCN; Cyanoamidogen; (Iminomethylidene)amino; Cyanoamino radical; Cyanomidyl; HN-C~N; 38150-66-2; Carbonimidoylamidogen; HN=C=N
Relative Molecular Mass: 41.03212 ± 0.00082

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
322.72320.23± 0.63kJ/mol

Top contributors to the provenance of ΔfH° of HNCN (g, doublet)

The 20 contributors listed below account only for 61.4% of the provenance of ΔfH° of HNCN (g, doublet).
A total of 135 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
9.75511.2 HNCN (g, doublet) → HCN (g) N (g, quartet) ΔrH°(0 K) = 277.37 ± 2.0 kJ/molKlippenstein 2017
9.75509.9 HNCN (g, doublet) → CH (g) N2 (g) ΔrH°(0 K) = 271.15 ± 2.0 kJ/molKlippenstein 2017
7.95512.8 HNCN (g, doublet) → NCN (g) H (g) ΔrH°(0 K) = 344.75 ± 2.0 kJ/molKlippenstein 2017
4.65509.1 HNCN (g, doublet) → CH (g) N2 (g) ΔrH°(0 K) = 2.80 ± 0.03 eVBise 2001
4.45681.1 NH2CN (cr) → NH2CN (g) ΔrH°(298.15 K) = 75.2 ± 1.5 kJ/molde Wit 1983a, est unc
3.65539.8 HCNN (g, doublet) → HNCN (g, doublet) ΔrH°(0 K) = -144.27 ± 2.0 kJ/molKlippenstein 2017
3.35512.7 HNCN (g, doublet) → NCN (g) H (g) ΔrH°(0 K) = 82.32 ± 0.74 kcal/molPuzzarini 2005, note unc2
2.45611.8 HC(NN) (g, 2A2) → HNCN (g, doublet) ΔrH°(0 K) = -168.15 ± 2.0 kJ/molKlippenstein 2017
1.85494.1 [HNCN]- (g, singlet) → HNCN (g, doublet) ΔrH°(0 K) = 2.622 ± 0.005 eVClifford 1997
1.55511.1 HNCN (g, doublet) → HCN (g) N (g, quartet) ΔrH°(0 K) = 65.73 ± 1.2 kcal/molHarding 2008a, est unc
1.55509.7 HNCN (g, doublet) → CH (g) N2 (g) ΔrH°(0 K) = 63.56 ± 1.2 kcal/molHarding 2008a, est unc
1.45544.2 HCNN (g, doublet) → HCN (g) N (g, quartet) ΔrH°(0 K) = 133.10 ± 2.0 kJ/molKlippenstein 2017
1.45541.9 HCNN (g, doublet) → CH (g, doublet) N2 (g) ΔrH°(0 K) = 126.88 ± 2.0 kJ/molKlippenstein 2017
1.35510.1 HNCN (g, doublet) → CH (g, quartet) N2 (g) ΔrH°(0 K) = 81.01 ± 1.2 kcal/molHarding 2008a, est unc
1.25512.6 HNCN (g, doublet) → NCN (g) H (g) ΔrH°(0 K) = 83.10 ± 1.2 kcal/molHarding 2008a, est unc
1.15491.6 HNCN (g, doublet) → [HNCN]+ (g, triplet) ΔrH°(0 K) = 10.799 ± 0.020 eVPuzzarini 2005, note unc2
0.95488.6 HNCN (g, doublet) → H (g) + 2 N (g) C (g) ΔrH°(0 K) = 370.0 ± 1.5 kcal/molBerman 2007, est unc
0.95488.5 HNCN (g, doublet) → H (g) + 2 N (g) C (g) ΔrH°(0 K) = 369.01 ± 1.50 kcal/molRuscic W1RO
0.95509.6 HNCN (g, doublet) → CH (g) N2 (g) ΔrH°(0 K) = 64.44 ± 1.50 kcal/molRuscic W1RO
0.95509.8 HNCN (g, doublet) → CH (g) N2 (g) ΔrH°(0 K) = 65.0 ± 1.5 kcal/molBerman 2007, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of HNCN (g, doublet)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 CyanoamidogenHNCN (g)[NH]C#N322.72320.23± 0.63kJ/mol41.03212 ±
0.00082
12347-01-2*0
79.1 Cyanoamidogen anion[HNCN]- (g, singlet)[NH-]C#N69.7466.73± 0.72kJ/mol41.03267 ±
0.00082
67131-47-9*2
79.1 Cyanoamidogen anion[HNCN]- (g)[NH-]C#N69.7466.73± 0.72kJ/mol41.03267 ±
0.00082
67131-47-9*0
46.4 CyanamideNH2CN (g)NC#N141.61135.60± 0.78kJ/mol42.04006 ±
0.00082
420-04-2*0
36.6 DiazomethylHCNN (g)[CH]=[N]=[N]467.86465.30± 0.68kJ/mol41.03212 ±
0.00082
20813-32-5*0
36.6 DiazomethylHCNN (g, doublet)[CH]=[N]=[N]467.86465.30± 0.68kJ/mol41.03212 ±
0.00082
20813-32-5*1
33.6 Diazomethanide[HCNN]- (g, singlet)[CH-]=[N]=[N]305.19302.10± 0.76kJ/mol41.03267 ±
0.00082
100840-43-5*2
33.6 Diazomethanide[HCNN]- (g)[CH-]=[N]=[N]305.19302.10± 0.76kJ/mol41.03267 ±
0.00082
100840-43-5*0
33.3 Cyanoaminylium[HNCN]+ (g, triplet)[NH+]C#N1363.11360.8± 1.3kJ/mol41.03157 ±
0.00082
205443-18-1*1
33.3 Cyanoaminylium[HNCN]+ (g)[NH+]C#N1363.11360.8± 1.3kJ/mol41.03157 ±
0.00082
205443-18-1*0

Most Influential reactions involving HNCN (g, doublet)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0005505.1 HNCN (g) → HNCN (g, doublet) ΔrH°(0 K) = 0 ± 0 cm-1Ruscic W1RO, Ruscic G4, Ruscic CBS-n
0.8325494.1 [HNCN]- (g, singlet) → HNCN (g, doublet) ΔrH°(0 K) = 2.622 ± 0.005 eVClifford 1997
0.3885491.6 HNCN (g, doublet) → [HNCN]+ (g, triplet) ΔrH°(0 K) = 10.799 ± 0.020 eVPuzzarini 2005, note unc2
0.2275611.8 HC(NN) (g, 2A2) → HNCN (g, doublet) ΔrH°(0 K) = -168.15 ± 2.0 kJ/molKlippenstein 2017
0.1345539.8 HCNN (g, doublet) → HNCN (g, doublet) ΔrH°(0 K) = -144.27 ± 2.0 kJ/molKlippenstein 2017
0.1185512.8 HNCN (g, doublet) → NCN (g) H (g) ΔrH°(0 K) = 344.75 ± 2.0 kJ/molKlippenstein 2017
0.0995511.2 HNCN (g, doublet) → HCN (g) N (g, quartet) ΔrH°(0 K) = 277.37 ± 2.0 kJ/molKlippenstein 2017
0.0985509.9 HNCN (g, doublet) → CH (g) N2 (g) ΔrH°(0 K) = 271.15 ± 2.0 kJ/molKlippenstein 2017
0.0975491.5 HNCN (g, doublet) → [HNCN]+ (g, triplet) ΔrH°(0 K) = 10.789 ± 0.040 eVRuscic W1RO
0.0645711.5 CH2NN (g) HNCN (g, doublet) → HCNN (g, doublet) NH2CN (g) ΔrH°(0 K) = 2.78 ± 0.9 kcal/molRuscic W1RO
0.0605507.5 HNCN (g, doublet) → HNCN (g, t-quartet) ΔrH°(0 K) = 27547 ± 420 cm-1Ruscic W1RO
0.0555572.6 HNNC (g, doublet) → HNCN (g, doublet) ΔrH°(0 K) = -39.88 ± 1.2 kcal/molHarding 2008a, est unc
0.0555572.5 HNNC (g, doublet) → HNCN (g, doublet) ΔrH°(0 K) = -39.74 ± 1.2 kcal/molRuscic W1RO
0.0515684.5 NH2CN (g) CH3NH (g) → HNCN (g, doublet) CH3NH2 (g) ΔrH°(0 K) = -3.16 ± 0.85 kcal/molRuscic W1RO
0.0495512.7 HNCN (g, doublet) → NCN (g) H (g) ΔrH°(0 K) = 82.32 ± 0.74 kcal/molPuzzarini 2005, note unc2
0.0475509.1 HNCN (g, doublet) → CH (g) N2 (g) ΔrH°(0 K) = 2.80 ± 0.03 eVBise 2001
0.0435683.5 NH2CN (g) NH2 (g) → HNCN (g, doublet) NH3 (g) ΔrH°(0 K) = -10.79 ± 0.85 kcal/molRuscic W1RO
0.0375684.3 NH2CN (g) CH3NH (g) → HNCN (g, doublet) CH3NH2 (g) ΔrH°(0 K) = -4.11 ± 1.0 kcal/molRuscic CBS-n
0.0365611.6 HC(NN) (g, 2A2) → HNCN (g, doublet) ΔrH°(0 K) = -39.92 ± 1.2 kcal/molHarding 2008a, est unc
0.0365611.5 HC(NN) (g, 2A2) → HNCN (g, doublet) ΔrH°(0 K) = -40.04 ± 1.2 kcal/molRuscic W1RO


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.148 of the Thermochemical Network (2023); available at ATcT.anl.gov
4   T. L. Nguyen, J. Peeters, J.-F. Müller, A. Perera, D. H. Bross, B. Ruscic, and J. F. Stanton,
Methanediol from Cloud-Processed Formaldehyde is Only a Minor Source of Atmospheric Formic Acid
Natl. Acad. Sci. 120, e2304650120/1-8 (2023) [DOI: 10.1073/pnas.2304650120]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.