Selected ATcT [1, 2] enthalpy of formation based on version 1.148 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.140 to include species relevant to a recent study of the role of atmospheric methanediol[4].

Phosgene

Formula: CCl2O (g)
CAS RN: 75-44-5
ATcT ID: 75-44-5*0
SMILES: O=C(Cl)Cl
SMILES: C(=O)(Cl)Cl
InChI: InChI=1S/CCl2O/c2-1(3)4
InChIKey: YGYAWVDWMABLBF-UHFFFAOYSA-N
Hills Formula: C1Cl2O1

2D Image:

O=C(Cl)Cl
Aliases: CCl2O; Phosgene; Carbonyl dichloride; Carbonyl chloride; Dichlorocarbonyl; Chlorocarbonyl; Carbonic dichloride; Carbonic chloride; Chloroformyl chloride; Dichloroformaldehyde; Carbon oxychloride; Carbon oxydichloride; Dichlorooxomethane; Carbon chloride oxide; Carbon dichloride oxide; Cl2C=O; Cl2CO; COCl2; UN 1076; RCRA P095; NCI-C60219; Carbinic chloride; CG
Relative Molecular Mass: 98.9155 ± 0.0020

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-217.50-219.19± 0.24kJ/mol

3D Image of CCl2O (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CCl2O (g)

The 7 contributors listed below account for 90.3% of the provenance of ΔfH° of CCl2O (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
32.16549.1 CO (g) Cl2 (g) → CCl2O (g) ΔrH°(298.15 K) = -25.90 ± 0.10 kcal/molStull 1961, as quoted by Cox 1970
32.16549.2 CO (g) Cl2 (g) → CCl2O (g) ΔrH°(298.15 K) = -25.95 ± 0.10 kcal/molLord 1970, as quoted by Pedley 1986
14.46548.8 CO2 (g) CCl4 (g) → 2 CCl2O (g) ΔrH°(0 K) = 11.18 ± 0.25 kcal/molKarton 2017, Karton 2011, Karton 2007, Karton 2006
6.76550.1 CCl2O (g) H2O (cr,l) → CO2 (g) + 2 HCl (g) ΔrH°(298.15 K) = -17.25 ± 0.22 kcal/molDavies 1972, as quoted by Pedley 1986
2.66545.8 CCl2O (g) → C (g) O (g) + 2 Cl (g) ΔrH°(0 K) = 338.05 ± 0.35 kcal/molKarton 2017
1.26545.9 CCl2O (g) → C (g) O (g) + 2 Cl (g) ΔrH°(0 K) = 337.76 ± 0.5 kcal/molDixon 2000
1.16548.7 CO2 (g) CCl4 (g) → 2 CCl2O (g) ΔrH°(0 K) = 11.28 ± 0.9 kcal/molRuscic W1RO

Top 10 species with enthalpies of formation correlated to the ΔfH° of CCl2O (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.4 PhosgeneCCl2O (cr, l, II+liquid)O=C(Cl)Cl-255.49-242.79± 0.25kJ/mol98.9155 ±
0.0020
75-44-5*502
99.4 PhosgeneCCl2O (cr, l, I+liquid)O=C(Cl)Cl-242.79± 0.25kJ/mol98.9155 ±
0.0020
75-44-5*501
19.5 TetrachloromethaneCCl4 (g)ClC(Cl)(Cl)Cl-89.36-91.53± 0.42kJ/mol153.8215 ±
0.0037
56-23-5*0
19.4 TetrachloromethaneCCl4 (l)ClC(Cl)(Cl)Cl-104.63-124.04± 0.42kJ/mol153.8215 ±
0.0037
56-23-5*500
14.5 Phosgene cation[CCl2O]+ (g)O=[C+](Cl)Cl897.0896.0± 1.7kJ/mol98.9150 ±
0.0020
73249-38-4*0
13.1 Formyl chlorideCHClO (g)C(=O)Cl-179.87-183.07± 0.67kJ/mol64.4707 ±
0.0012
2565-30-2*0
12.8 ChloroformCHCl3 (g)C(Cl)(Cl)Cl-94.59-99.50± 0.40kJ/mol119.3767 ±
0.0028
67-66-3*0
11.8 ChloroformCHCl3 (l)C(Cl)(Cl)Cl-130.90± 0.43kJ/mol119.3767 ±
0.0028
67-66-3*590
10.3 BromotrichloromethaneCCl3Br (g)ClC(Cl)(Cl)Br-29.92-39.06± 0.54kJ/mol198.2728 ±
0.0030
75-62-7*0
9.7 DichloromethaneCH2Cl2 (g)C(Cl)Cl-86.89-93.75± 0.34kJ/mol84.9320 ±
0.0020
75-09-2*0

Most Influential reactions involving CCl2O (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0006552.1 CCl2O (cr, l, II+liquid) → CCl2O (g) ΔrH°(280.71 K) = 5.825 ± 0.006 kcal/molGiauque 1960, Giauque 1948
1.0006551.1 CCl2O (cr, l, I+liquid) → CCl2O (g) ΔrH°(280.71 K) = 5.825 ± 0.006 kcal/molGiauque 1960, Giauque 1948
0.7076546.2 CCl2O (g) → [CCl2O]+ (g) ΔrH°(0 K) = 11.55 ± 0.02 eVChadwick 1972
0.3246549.1 CO (g) Cl2 (g) → CCl2O (g) ΔrH°(298.15 K) = -25.90 ± 0.10 kcal/molStull 1961, as quoted by Cox 1970
0.3246549.2 CO (g) Cl2 (g) → CCl2O (g) ΔrH°(298.15 K) = -25.95 ± 0.10 kcal/molLord 1970, as quoted by Pedley 1986
0.3206584.5 CCl2O (g) → [ClCO]+ (g) Cl (g) ΔrH°(0 K) = 11.649 ± 0.040 eVRuscic W1RO
0.2936548.8 CO2 (g) CCl4 (g) → 2 CCl2O (g) ΔrH°(0 K) = 11.18 ± 0.25 kcal/molKarton 2017, Karton 2011, Karton 2007, Karton 2006
0.1386566.4 CHClO (g) → CH2O (g) CCl2O (g) ΔrH°(0 K) = 9.23 ± 0.85 kcal/molRuscic W1RO
0.1236566.2 CHClO (g) → CH2O (g) CCl2O (g) ΔrH°(0 K) = 8.37 ± 0.90 kcal/molRuscic G4
0.1236566.1 CHClO (g) → CH2O (g) CCl2O (g) ΔrH°(0 K) = 8.38 ± 0.90 kcal/molRuscic G3X
0.1156928.4 C6H5C(O)Cl (g) CHClO (g) → C6H5C(O)H (g) CCl2O (g) ΔrH°(0 K) = 7.91 ± 0.85 kcal/molRuscic W1RO
0.1136546.1 CCl2O (g) → [CCl2O]+ (g) ΔrH°(0 K) = 11.55 ± 0.05 eVDavico 1995, est unc
0.1026928.1 C6H5C(O)Cl (g) CHClO (g) → C6H5C(O)H (g) CCl2O (g) ΔrH°(0 K) = 7.74 ± 0.90 kcal/molRuscic G3X
0.1026928.2 C6H5C(O)Cl (g) CHClO (g) → C6H5C(O)H (g) CCl2O (g) ΔrH°(0 K) = 7.47 ± 0.90 kcal/molRuscic G4
0.0996566.3 CHClO (g) → CH2O (g) CCl2O (g) ΔrH°(0 K) = 8.30 ± 1.0 kcal/molRuscic CBS-n
0.0966584.3 CCl2O (g) → [ClCO]+ (g) Cl (g) ΔrH°(0 K) = 11.591 ± 0.073 eVRuscic G4
0.0836928.3 C6H5C(O)Cl (g) CHClO (g) → C6H5C(O)H (g) CCl2O (g) ΔrH°(0 K) = 7.90 ± 1.00 kcal/molRuscic CBS-n
0.0686550.1 CCl2O (g) H2O (cr,l) → CO2 (g) + 2 HCl (g) ΔrH°(298.15 K) = -17.25 ± 0.22 kcal/molDavies 1972, as quoted by Pedley 1986
0.0656546.6 CCl2O (g) → [CCl2O]+ (g) ΔrH°(0 K) = 11.617 ± 0.040 (×1.646) eVRuscic W1RO
0.0646587.5 CCl2O (g) → ClCO (g) Cl (g) ΔrH°(0 K) = 75.62 ± 0.5 kcal/molDixon 2000


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.148 of the Thermochemical Network (2023); available at ATcT.anl.gov
4   T. L. Nguyen, J. Peeters, J.-F. Müller, A. Perera, D. H. Bross, B. Ruscic, and J. F. Stanton,
Methanediol from Cloud-Processed Formaldehyde is Only a Minor Source of Atmospheric Formic Acid
Natl. Acad. Sci. 120, e2304650120/1-8 (2023) [DOI: 10.1073/pnas.2304650120]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.